Niyogi Sayantanee, Mucci Juan, Campetella Oscar, Docampo Roberto
Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America.
Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
PLoS Pathog. 2014 Jun 26;10(6):e1004224. doi: 10.1371/journal.ppat.1004224. eCollection 2014 Jun.
Trypanosoma cruzi is the etiologic agent of Chagas disease. Although this is not a free-living organism it has conserved a contractile vacuole complex (CVC) to regulate its osmolarity. This obligate intracellular pathogen is, in addition, dependent on surface proteins to invade its hosts. Here we used a combination of genetic and biochemical approaches to delineate the contribution of the CVC to the traffic of glycosylphosphatidylinositol (GPI)-anchored proteins to the plasma membrane of the parasite and promote host invasion. While T. cruzi Rab11 (GFP-TcRab11) localized to the CVC, a dominant negative (DN) mutant tagged with GFP (GFP-TcRab11DN) localized to the cytosol, and epimastigotes expressing this mutant were less responsive to hyposmotic and hyperosmotic stress. Mutant parasites were still able to differentiate into metacyclic forms and infect host cells. GPI-anchored trans-sialidase (TcTS), mucins of the 60-200 KDa family, and trypomastigote small surface antigen (TcTSSA II) co-localized with GFP-TcRab11 to the CVC during transformation of intracellular amastigotes into trypomastigotes. Mucins of the gp35/50 family also co-localized with the CVC during metacyclogenesis. Parasites expressing GFP-TcRab11DN prevented TcTS, but not other membrane proteins, from reaching the plasma membrane, and were less infective as compared to wild type cells. Incubation of these mutants in the presence of exogenous recombinant active, but not inactive, TcTS, and a sialic acid donor, before infecting host cells, partially rescued infectivity of trypomastigotes. Taking together these results reveal roles of TcRab11 in osmoregulation and trafficking of trans-sialidase to the plasma membrane, the role of trans-sialidase in promoting infection, and a novel unconventional mechanism of GPI-anchored protein secretion.
克氏锥虫是恰加斯病的病原体。尽管它不是自由生活的生物体,但它保留了一个收缩泡复合体(CVC)来调节其渗透压。此外,这种专性细胞内病原体依赖表面蛋白来侵入宿主。在这里,我们使用遗传和生化方法相结合,来阐明CVC对糖基磷脂酰肌醇(GPI)锚定蛋白转运至寄生虫质膜并促进宿主入侵的作用。虽然克氏锥虫Rab11(GFP-TcRab11)定位于CVC,但带有GFP的显性负性(DN)突变体(GFP-TcRab11DN)定位于细胞质,表达该突变体的无鞭毛体对低渗和高渗应激的反应较弱。突变寄生虫仍能分化为循环后期形式并感染宿主细胞。在细胞内无鞭毛体转化为锥鞭毛体的过程中,GPI锚定的转唾液酸酶(TcTS)、60-200 kDa家族的黏蛋白和锥鞭毛体小表面抗原(TcTSSA II)与GFP-TcRab11共定位于CVC。gp35/50家族的黏蛋白在循环后期发育过程中也与CVC共定位。表达GFP-TcRab11DN的寄生虫阻止了TcTS而非其他膜蛋白到达质膜,与野生型细胞相比,其感染性较低。在感染宿主细胞之前,如果这些突变体在存在外源性重组活性而非无活性的TcTS和唾液酸供体的情况下孵育,则可部分挽救锥鞭毛体的感染性。综合这些结果揭示了TcRab11在渗透调节和转唾液酸酶向质膜转运中的作用、转唾液酸酶在促进感染中的作用以及一种新的非常规GPI锚定蛋白分泌机制。