Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Plataforma de Microscopia Eletrônica Rudolf Barth, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil.
Life Sci Alliance. 2024 Jul 29;7(10). doi: 10.26508/lsa.202402826. Print 2024 Oct.
uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle. Using TcrPDEC2 and TcVps34 overexpressing mutants, known to have low and high efficiency for osmotic responses, we described a structural phenotype for the CVC that matches their corresponding physiological responses. Quantitative tomography provided data on the volume of the CVC and spongiome connections. Changes in the adhesion plaque during the pulsation cycle were also quantified and a dense filamentous network was observed. Together, the results suggest that the adhesion plaque mediates fluid discharge from the central vacuole, revealing new aspects of the osmoregulatory system in .
利用各种机制来应对感染过程中的渗透波动,包括收缩泡复合体(CVC)等细胞器的重塑。关于渗透胁迫时脉动循环中 CVC 的形态变化知之甚少。在这里,我们研究了 CVC 和鞭毛口袋域之间的结构-功能关系,鞭毛口袋域是流体排放发生的地方-黏附斑-在 CVC 脉动循环期间。我们使用了已知对渗透反应具有低效率和高效率的 TcrPDEC2 和 TcVps34 过表达突变体,描述了与它们相应的生理反应相匹配的 CVC 结构表型。定量断层扫描提供了关于 CVC 体积和海绵体连接的的数据。还对脉动循环过程中黏附斑的变化进行了定量分析,并观察到密集的丝状网络。总之,结果表明黏附斑介导了中央液泡中的流体排放,揭示了. 中渗透压调节系统的新方面。