Lindhardt Emma, Gennemark Peter
CVMD iMED DMPK AstraZeneca R&D, SE-431 83 Mölndal, Sweden.
J Bioinform Comput Biol. 2014 Jun;12(3):1450010. doi: 10.1142/S0219720014500103. Epub 2014 Mar 6.
Model-based analysis of routinely generated pharmacokinetic and pharmacodynamic (PK-PD) data is a key component of preclinical drug discovery. The work process of such analyses can be automated by properly designed computer programs that reduce the number of manual steps, resulting in time saving and significantly fewer errors. Critical decisions can still be made by modelers. Using concrete animal data examples this paper illustrates when, and demonstrates how, automated PK-PD approaches can be used and what benefits they offer to the modeling and simulation community. Specifically, we describe two compound optimization case studies from drug discovery projects, and also demonstrate how a subsequent optimization step to predict the human dose can be coupled to an automated approach.
基于模型的常规生成的药代动力学和药效学(PK-PD)数据分析是临床前药物发现的关键组成部分。通过设计合理的计算机程序可以自动执行此类分析的工作流程,从而减少人工步骤数量,节省时间并显著减少错误。建模人员仍可做出关键决策。本文通过具体的动物数据示例说明了何时以及如何使用自动化PK-PD方法,以及它们为建模和模拟社区带来的好处。具体而言,我们描述了药物发现项目中的两个化合物优化案例研究,并展示了如何将预测人体剂量的后续优化步骤与自动化方法相结合。