Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States.
Biochemistry. 2014 Aug 5;53(30):4904-13. doi: 10.1021/bi500532e. Epub 2014 Jul 18.
Iron-sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe-S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe-S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe-S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich's ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe-S cluster biosynthesis activities of the Fe-S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe-S clusters. Additional mutagenesis, enzyme kinetic, UV-visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe-S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe-S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe-S cluster biosynthesis.
铁硫簇是具有关键细胞功能的普遍存在的蛋白质辅因子。线粒体 Fe-S 组装复合物由半胱氨酸脱硫酶 NFS1 及其辅助蛋白 (ISD11)、Fe-S 组装蛋白 (ISCU2) 和 frataxin (FXN) 组成,将底物 l-半胱氨酸、亚铁离子和电子转化为 Fe-S 簇。FXN 的生理功能自发现其缺失与神经退行性疾病弗里德里希共济失调直接相关以来,受到了极大的关注。以前的体外结果表明,人类 FXN 在激活半胱氨酸脱硫酶和 Fe-S 组装复合物的 Fe-S 簇生物合成活性方面发挥作用。在这里,我们进行了放射性标记实验,表明 FXN 加速了 ISCU2 上硫的积累,并且所得的过硫化物物种在随后的 Fe-S 簇合成中是可行的。额外的突变、酶动力学、紫外-可见和圆二色性光谱研究表明,保守的 ISCU2 残基 C104 对于 FXN 激活至关重要,而 C35、C61 和 C104 对于组装复合物上的 Fe-S 簇形成都是必不可少的。这些结果不能完全用 FXN 作为 Fe-S 簇生物合成的铁供体的假设来解释,并且进一步支持 FXN 的变构调节剂作用。总之,这些结果导致了一种激活模型,其中 FXN 加速 NFS1 上的过硫化物形成,并有利于 ISCU2 上的螺旋到线圈的互变,从而促进从 NFS1 向 ISCU2 转移硫作为 Fe-S 簇生物合成的初始步骤。