Department of Chemistry, Texas A&M University, College Station, TX 77842.
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112.
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5325-E5334. doi: 10.1073/pnas.1702849114. Epub 2017 Jun 20.
In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.
在真核生物中,半胱氨酸脱硫酶复合物将硫动员到多个生物合成途径中,该复合物由一个催化亚基(NFS1)、LYR 蛋白(ISD11)和酰基载体蛋白(ACP)组成。这个 NFS1-ISD11-ACP(SDA)复合物形成了铁硫(Fe-S)组装复合物的核心,并与组装蛋白 ISCU2、FXN(弗里德里希共济失调症蛋白)和铁氧还蛋白结合,合成 Fe-S 簇。在这里,我们展示了与酶动力学和基于细胞的研究相结合的 SDA 复合物的晶体和电子显微镜结构,以提供线粒体半胱氨酸脱硫酶的结构-功能特性。与原核半胱氨酸脱硫酶不同,SDA 结构采用了一种意想不到的架构,其中一对 ISD11 亚基形成了 SDA 复合物的二聚核心,这阐明了 ISD11 在真核组装中的关键作用。不同的四级结构导致不完全形成的底物通道和暴露在溶剂中的吡哆醛 5'-磷酸辅因子,并为 FXN 在真核系统中的变构激活剂功能提供了合理依据。该结构还揭示了 ACP 结合的 4'-磷酸泛酰巯基乙胺酰基占据了 ISD11 的疏水性核心,解释了 ACP 稳定的基础。SDA 复合物的意外结构为理解与含硫生物合成途径的受体蛋白相互作用提供了框架,阐明了真核 Fe-S 簇生物合成的机制细节,并澄清了 Fe-S 簇组装缺陷如何导致弗里德里希共济失调症等疾病。此外,我们的结果支持了一个锁钥模型,即 LYR 蛋白与酰基-ACP 结合作为脂肪酸生物合成的一种机制,以协调呼吸复合物的表达、Fe-S 辅因子成熟和活性。