Penning Bryan W, Sykes Robert W, Babcock Nicholas C, Dugard Christopher K, Held Michael A, Klimek John F, Shreve Jacob T, Fowler Matthew, Ziebell Angela, Davis Mark F, Decker Stephen R, Turner Geoffrey B, Mosier Nathan S, Springer Nathan M, Thimmapuram Jyothi, Weil Clifford F, McCann Maureen C, Carpita Nicholas C
Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.).
Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
Plant Physiol. 2014 Aug;165(4):1475-1487. doi: 10.1104/pp.114.242446. Epub 2014 Jun 27.
Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.
降低或改变生物质作物中木质素的生物技术方法基于这样一种假设,即木质素是生物质对用于生物燃料生产的酶促消化抗性的主要决定因素。我们在B73×Mo17重组自交系玉米群体中,使用热解分子束质谱法确定茎木质素含量,并通过酶水解试验测量葡萄糖和木糖产量,从而定义了数量性状基因座(QTL)。在五个多年期木质素丰度QTL、两个4-乙烯基苯酚丰度QTL以及四个葡萄糖和/或木糖产量QTL中,没有一个芳香族丰度和糖产量QTL是共享的。对由282个成员组成的玉米关联群体的木质素丰度和糖产量进行全基因组关联研究,在B73和Mo17亲本的11个QTL中提供了候选基因,但表明在这一更大范围的玉米遗传多样性中存在许多影响这些性状的其他等位基因。B73和Mo17基因型在发育中的茎组织中的基因表达表现出很大差异,与等位基因变异无关。结合这些互补的遗传方法可缩小候选基因列表。一组类似稻草人9(SCARECROW-LIKE9)和类似稻草人14(SCARECROW-LIKE14)转录因子基因是全基因组关联研究中出现的特别强有力的候选基因。除了这些以及与细胞壁代谢相关的基因外,候选基因还包括其他几个与血管形成和纤维形成相关的转录因子以及细胞信号通路的组成部分。这些结果为提高转基因生物质生物燃料产量提供了新的见解和策略,而不仅仅局限于木质素的修饰。