Suppr超能文献

系统生物学方法揭示了与玉米细胞壁可降解性相关的基因共表达网络。

A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize.

机构信息

Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.

Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France.

出版信息

PLoS One. 2019 Dec 31;14(12):e0227011. doi: 10.1371/journal.pone.0227011. eCollection 2019.

Abstract

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.

摘要

了解触发细胞壁降解能力变化的机制是提高木质纤维素生物质作为动物饲料或生物炼制原料的能量价值的前提。在这里,我们采用多尺度系统方法来阐明玉米细胞壁降解能力的遗传基础。我们证明,在包含细胞壁降解能力主要数量性状位点(QTL)的一个区域内,两对近等基因系的等位基因替换导致表型变异的幅度和方向与 F271×F288 重组自交系后代细胞壁降解能力 QTL 分析预期的相似。利用 F271 和 F288 自交系 QTL 区间内的 DNA 序列和选定近等基因系节间的 Illumina RNA 测序数据集,我们注释了 QTL 区间内的基因,并提供了证据表明,在导入的 QTL 区域的等位基因变异导致基因表达的协调变化。与细胞壁相关性状变异相关的基因共表达网络的鉴定表明,有利的 F288 等位基因利用与氧化还原、过氧化氢代谢调节、蛋白质折叠和激素反应相关的生物学过程。在共表达基因的模块中嵌套着潜在的新细胞壁调节因子,包括乙烯反应因子家族的 VII 组两个转录因子,它们可被用来微调细胞壁降解能力。总的来说,这些发现为主要基因座影响细胞壁降解能力的调控机制提供了新的见解,为玉米中该基因座的基于图谱的克隆铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7a/6938352/11cee661ab1d/pone.0227011.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验