Ferrera Denise, Mazzaro Nadia, Canale Claudio, Gasparini Laura
Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.
Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.
Neurobiol Aging. 2014 Nov;35(11):2444-2457. doi: 10.1016/j.neurobiolaging.2014.05.023. Epub 2014 May 29.
In Alzheimer's disease (AD), amyloid-β (Aβ) deposits accumulate in the brain parenchyma and contain fibrils of aggregated heterogeneous Aβ peptides. In addition to fibrils, Aβ aggregates into stable soluble species (termed Aβ oligomers), which are increasingly viewed as the key drivers of early neurodegenerative events in AD. Aβ aggregates stimulate microglia recruitment and activation. In the AD brain, microglia surround Aβ deposits, activate, and abnormally produce inflammatory mediators, contributing to AD pathogenesis. However, it remains unclear to which of the conformationally diverse Aβ species microglia specifically react. Here, we explore the "sensor" capability of murine microglia. We examine whether they can detect and discriminate the toxic Aβ oligomers, Aβ fibrils, and Aβ-induced neuronal damage and investigate whether they are activated by diverse human Aβ species cell autonomously or through neuron-derived factors. We find that, on aggregation in vitro, Aβ42 peptides form stable oligomers and fibrils, which are neurotoxic and trigger dendritic spine loss in mature primary mouse hippocampal neurons. Further, in resting primary murine microglia, Aβ42 fibrils induce a pattern of expression of inflammatory genes typical of the classical inflammatory response induced by infectious agents (e.g., the bacterial toxin lipopolysaccharide). Conversely, Aβ42 oligomers never elicit a microglia inflammatory response, whether applied alone, in combination with neuron-derived secreted factors, or in contact with neurons. Thus, microglia strongly react to Aβ42 fibrils, but do not sense Aβ oligomers or oligomer-induced neuronal damage. This suggests that early neurotoxic species can escape detection by microglia, leading to the chronic unfolding of amyloid pathology in AD.
在阿尔茨海默病(AD)中,淀粉样β蛋白(Aβ)沉积物在脑实质中积聚,且包含聚集的异质性Aβ肽原纤维。除了原纤维外,Aβ还聚集成稳定的可溶性物质(称为Aβ寡聚体),越来越多的研究认为这些寡聚体是AD早期神经退行性病变的关键驱动因素。Aβ聚集体刺激小胶质细胞的募集和激活。在AD大脑中,小胶质细胞围绕着Aβ沉积物,被激活并异常产生炎症介质,这对AD的发病机制有推动作用。然而,目前尚不清楚小胶质细胞对构象多样的Aβ物种中哪一种会产生特异性反应。在此,我们探究了小鼠小胶质细胞的“传感”能力。我们研究它们是否能够检测并区分有毒性的Aβ寡聚体、Aβ原纤维以及Aβ诱导的神经元损伤,并研究它们是通过不同的人类Aβ物种自主激活,还是通过神经元衍生因子激活。我们发现,在体外聚集时,Aβ42肽形成稳定的寡聚体和原纤维,它们具有神经毒性并引发成熟原代小鼠海马神经元的树突棘丢失。此外,在静息的原代小鼠小胶质细胞中,Aβ42原纤维诱导出一种由病原体(如细菌毒素脂多糖)诱导的经典炎症反应所特有的炎症基因表达模式。相反,无论单独应用、与神经元衍生的分泌因子联合应用,还是与神经元接触,Aβ42寡聚体都不会引发小胶质细胞的炎症反应。因此,小胶质细胞对Aβ42原纤维有强烈反应,但无法感知Aβ寡聚体或寡聚体诱导的神经元损伤。这表明早期神经毒性物质能够逃避小胶质细胞的检测,从而导致AD中淀粉样病理的慢性发展。