Suppr超能文献

出生10天时通过快速全基因组测序对长QT综合征进行分子诊断。

Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing.

作者信息

Priest James R, Ceresnak Scott R, Dewey Frederick E, Malloy-Walton Lindsey E, Dunn Kyla, Grove Megan E, Perez Marco V, Maeda Katsuhide, Dubin Anne M, Ashley Euan A

机构信息

Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California; Child Health Research Institute; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.

Division of Cardiovascular Medicine; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California.

出版信息

Heart Rhythm. 2014 Oct;11(10):1707-13. doi: 10.1016/j.hrthm.2014.06.030. Epub 2014 Jun 25.

Abstract

BACKGROUND

The advent of clinical next generation sequencing is rapidly changing the landscape of rare disease medicine. Molecular diagnosis of long QT syndrome (LQTS) can affect clinical management, including risk stratification and selection of pharmacotherapy on the basis of the type of ion channel affected, but results from the current gene panel testing requires 4-16 weeks before return to clinicians.

OBJECTIVE

A term female infant presented with 2:1 atrioventricular block and ventricular arrhythmias consistent with perinatal LQTS, requiring aggressive treatment including epicardial pacemaker and cardioverter-defibrillator implantation and sympathectomy on day of life 2. We sought to provide a rapid molecular diagnosis for the optimization of treatment strategies.

METHODS

We performed Clinical Laboratory Improvement Amendments-certified rapid whole genome sequencing (WGS) with a speed-optimized bioinformatics platform to achieve molecular diagnosis at 10 days of life.

RESULTS

We detected a known pathogenic variant in KCNH2 that was demonstrated to be paternally inherited by follow-up genotyping. The unbiased assessment of the entire catalog of human genes provided by WGS revealed a maternally inherited variant of unknown significance in a novel gene.

CONCLUSION

Rapid clinical WGS provides faster and more comprehensive diagnostic information at 10 days of life than does standard gene panel testing. In selected clinical scenarios such as perinatal LQTS, rapid WGS can provide more timely and clinically actionable information than can a standard commercial test.

摘要

背景

临床下一代测序技术的出现正在迅速改变罕见病医学的格局。长QT综合征(LQTS)的分子诊断可影响临床管理,包括风险分层以及根据受影响的离子通道类型选择药物治疗,但目前基因检测板检测的结果需要4至16周才能反馈给临床医生。

目的

一名足月女婴出现2:1房室传导阻滞和与围产期LQTS一致的室性心律失常,在出生第2天需要积极治疗,包括植入心外膜起搏器和心脏复律除颤器以及进行交感神经切除术。我们试图提供快速分子诊断以优化治疗策略。

方法

我们使用经过临床实验室改进修正案认证的快速全基因组测序(WGS)以及速度优化的生物信息学平台,在出生10天时实现分子诊断。

结果

我们在KCNH2基因中检测到一个已知的致病变异,后续基因分型显示该变异为父系遗传。WGS对人类基因全目录的无偏评估揭示了一个在新基因中母系遗传的意义未明的变异。

结论

与标准基因检测板检测相比,快速临床WGS在出生10天时能提供更快、更全面的诊断信息。在围产期LQTS等特定临床场景中,快速WGS能比标准商业检测提供更及时且具有临床可操作性的信息。

相似文献

1
Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing.
Heart Rhythm. 2014 Oct;11(10):1707-13. doi: 10.1016/j.hrthm.2014.06.030. Epub 2014 Jun 25.
3
Arrhythmia phenotype during fetal life suggests long-QT syndrome genotype: risk stratification of perinatal long-QT syndrome.
Circ Arrhythm Electrophysiol. 2013 Oct;6(5):946-51. doi: 10.1161/CIRCEP.113.000618. Epub 2013 Aug 30.
4
Follow-up of 316 molecularly defined pediatric long-QT syndrome patients: clinical course, treatments, and side effects.
Circ Arrhythm Electrophysiol. 2015 Aug;8(4):815-23. doi: 10.1161/CIRCEP.114.002654. Epub 2015 Jun 10.
8
Considerations when using next-generation sequencing for genetic diagnosis of long-QT syndrome in the clinical testing laboratory.
Clin Chim Acta. 2017 Jan;464:128-135. doi: 10.1016/j.cca.2016.11.013. Epub 2016 Nov 18.
9
Evaluation and Management of Athletes With Long QT Syndrome.
Sports Health. 2016 Nov/Dec;8(6):527-535. doi: 10.1177/1941738116660294. Epub 2016 Aug 6.

引用本文的文献

3
The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome.
J Cardiovasc Transl Res. 2023 Feb;16(1):209-220. doi: 10.1007/s12265-022-10298-x. Epub 2022 Aug 17.
4
Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing.
Nat Biotechnol. 2022 Jul;40(7):1035-1041. doi: 10.1038/s41587-022-01221-5. Epub 2022 Mar 28.
6
Disruption of protein quality control of the human ether-à-go-go related gene K channel results in profound long QT syndrome.
Heart Rhythm. 2022 Feb;19(2):281-292. doi: 10.1016/j.hrthm.2021.10.005. Epub 2021 Oct 9.
7
A phenome-wide association study of 26 mendelian genes reveals phenotypic expressivity of common and rare variants within the general population.
PLoS Genet. 2020 Nov 23;16(11):e1008802. doi: 10.1371/journal.pgen.1008802. eCollection 2020 Nov.
8
Reevaluating the Mutation Classification in Genetic Studies of Bradycardia Using ACMG/AMP Variant Classification Framework.
Int J Genomics. 2020 Feb 25;2020:2415850. doi: 10.1155/2020/2415850. eCollection 2020.
9
Practical Aspects in Genetic Testing for Cardiomyopathies and Channelopathies.
Clin Biochem Rev. 2019 Nov;40(4):187-200. doi: 10.33176/AACB-19-00030.
10
Translating genomic testing results for pediatric critical care: Opportunities for genetic counselors.
J Genet Couns. 2020 Feb;29(1):78-87. doi: 10.1002/jgc4.1182. Epub 2019 Nov 7.

本文引用的文献

1
Clinical interpretation and implications of whole-genome sequencing.
JAMA. 2014 Mar 12;311(10):1035-45. doi: 10.1001/jama.2014.1717.
2
Genotype- and phenotype-guided management of congenital long QT syndrome.
Curr Probl Cardiol. 2013 Oct;38(10):417-55. doi: 10.1016/j.cpcardiol.2013.08.001.
4
Arrhythmia phenotype during fetal life suggests long-QT syndrome genotype: risk stratification of perinatal long-QT syndrome.
Circ Arrhythm Electrophysiol. 2013 Oct;6(5):946-51. doi: 10.1161/CIRCEP.113.000618. Epub 2013 Aug 30.
5
Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome.
Circ Cardiovasc Genet. 2013 Aug;6(4):354-61. doi: 10.1161/CIRCGENETICS.113.000023. Epub 2013 Jul 15.
6
ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing.
Genet Med. 2013 Jul;15(7):565-74. doi: 10.1038/gim.2013.73. Epub 2013 Jun 20.
7
Results of genetic testing in 855 consecutive unrelated patients referred for long QT syndrome in a clinical laboratory.
Genet Test Mol Biomarkers. 2013 Jul;17(7):553-61. doi: 10.1089/gtmb.2012.0118. Epub 2013 Apr 30.
8
Long QT syndrome-associated mutations in intrauterine fetal death.
JAMA. 2013 Apr 10;309(14):1473-82. doi: 10.1001/jama.2013.3219.
9
Potential risks of pharmacy compounding.
Drugs R D. 2013 Mar;13(1):1-8. doi: 10.1007/s40268-013-0005-9.
10
Ethical and policy issues in genetic testing and screening of children.
Pediatrics. 2013 Mar;131(3):620-2. doi: 10.1542/peds.2012-3680. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验