Suppr超能文献

厌氧脂肪酸降解群落中互营与非互营生活方式的基因组学视角。

A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities.

作者信息

Worm Petra, Koehorst Jasper J, Visser Michael, Sedano-Núñez Vicente T, Schaap Peter J, Plugge Caroline M, Sousa Diana Z, Stams Alfons J M

机构信息

Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.

Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.

出版信息

Biochim Biophys Acta. 2014 Dec;1837(12):2004-2016. doi: 10.1016/j.bbabio.2014.06.005. Epub 2014 Jun 26.

Abstract

In sulfate-reducing and methanogenic environments complex biopolymers are hydrolyzed and degraded by fermentative micro-organisms that produce hydrogen, carbon dioxide and short chain fatty acids. Degradation of short chain fatty acids can be coupled to methanogenesis or to sulfate-reduction. Here we study from a genome perspective why some of these micro-organisms are able to grow in syntrophy with methanogens and others are not. Bacterial strains were selected based on genome availability and upon their ability to grow on short chain fatty acids alone or in syntrophic association with methanogens. Systematic functional domain profiling allowed us to shed light on this fundamental and ecologically important question. Extra-cytoplasmic formate dehydrogenases (InterPro domain number; IPR006443), including their maturation protein FdhE (IPR024064 and IPR006452) is a typical difference between syntrophic and non-syntrophic butyrate and propionate degraders. Furthermore, two domains with a currently unknown function seem to be associated with the ability of syntrophic growth. One is putatively involved in capsule or biofilm production (IPR019079) and a second in cell division, shape-determination or sporulation (IPR018365). The sulfate-reducing bacteria Desulfobacterium autotrophicum HRM2, Desulfomonile tiedjei and Desulfosporosinus meridiei were never tested for syntrophic growth, but all crucial domains were found in their genomes, which suggests their possible ability to grow in syntrophic association with methanogens. In addition, profiling domains involved in electron transfer mechanisms revealed the important role of the Rnf-complex and the formate transporter in syntrophy, and indicate that DUF224 may have a role in electron transfer in bacteria other than Syntrophomonas wolfei as well. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).

摘要

在硫酸盐还原和产甲烷环境中,复杂的生物聚合物会被发酵微生物水解和降解,这些微生物会产生氢气、二氧化碳和短链脂肪酸。短链脂肪酸的降解可以与产甲烷作用或硫酸盐还原作用相耦合。在此,我们从基因组角度研究为什么这些微生物中的一些能够与产甲烷菌共生生长,而另一些则不能。根据基因组的可获得性以及它们单独利用短链脂肪酸生长或与产甲烷菌共生生长的能力,选择了细菌菌株。系统的功能域分析使我们能够阐明这个基本且具有重要生态意义的问题。胞外甲酸脱氢酶(InterPro结构域编号:IPR006443),包括其成熟蛋白FdhE(IPR024064和IPR006452)是共生型和非共生型丁酸和丙酸降解菌之间的典型差异。此外,两个目前功能未知的结构域似乎与共生生长能力有关。一个可能参与荚膜或生物膜的产生(IPR019079),另一个参与细胞分裂、形状确定或孢子形成(IPR018365)。自养脱硫杆菌HRM2、蒂氏脱硫单胞菌和梅里迪脱硫芽孢八叠球菌等硫酸盐还原细菌从未进行过共生生长测试,但在它们的基因组中发现了所有关键结构域,这表明它们可能具有与产甲烷菌共生生长的能力。此外,对参与电子传递机制的结构域进行分析揭示了Rnf复合物和甲酸转运体在共生作用中的重要作用,并表明DUF224可能在除沃氏互营单胞菌之外的其他细菌的电子传递中也发挥作用。本文是名为“第18届欧洲生物能量学会议”(《生物化学与生物物理学报》,第1837卷,第7期,2014年7月)特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验