Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden.
Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg.
FEMS Microbiol Rev. 2022 Mar 3;46(2). doi: 10.1093/femsre/fuab057.
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
共生丙酸降解所依赖的相互营养合作为相关微生物提供了少量的能量,因此丙酸降解通常是产甲烷系统的瓶颈。了解同型产丙酸菌(SPOB)的生态学、生理学和代谢能力在工程和自然生态系统中都很重要,因为它为指导沼气生产和生物质衍生化学品技术的进一步发展提供了前景,并对预测生物成因甲烷排放对气候变化的贡献具有重要意义。SPOB 分布在不同的门中。除了共生作用(例如发酵、硫化和乙酰化代谢)外,它们还可以表现出广泛的代谢能力,并与合作伙伴相互作用的变化,表明它们的共生生活方式存在细微差别。在这篇综述中,我们讨论了甲基丙二酰辅酶 A 途径、氢化酶和甲酸脱氢酶的基因库和组织的区别,以及(甲酸/氢/直接)电子转移机制的新方面。我们还利用培养、热力学计算和组学分析的信息,作为确定各种生态系统中丙酸氧化的环境条件的基础。总的来说,这篇综述提高了对 SPOB 的基础和应用理解,并强调了知识差距,希望鼓励未来在生物技术过程中对丙酸代谢的研究和工程应用。