Suppr超能文献

N-乙酰半胱氨酸对双特异性磷酸酶4的氧化还原激活作用可保护内皮细胞免受镉离子诱导的细胞凋亡。

Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd²⁺-induced apoptosis.

作者信息

Barajas-Espinosa Alma, Basye Ariel, Jesse Erin, Yan Haixu, Quan David, Chen Chun-An

机构信息

Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA.

出版信息

Free Radic Biol Med. 2014 Sep;74:188-199. doi: 10.1016/j.freeradbiomed.2014.06.016. Epub 2014 Jun 26.

Abstract

Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.

摘要

氧化还原失衡是内皮功能障碍(ED)的主要原因。在氧化应激下,许多调节内皮功能的关键蛋白会发生氧化修饰,从而导致内皮功能障碍。细胞内主要的还原源谷胱甘肽(GSH)水平可通过可逆的蛋白质硫醇修饰显著调节细胞功能。N-乙酰半胱氨酸(NAC)作为GSH生物合成的前体,对许多血管疾病有益;然而,这些益处的详细机制仍不清楚。通过高效液相色谱分析,NAC显著提高了细胞内GSH和四氢生物蝶呤水平。对内皮型一氧化氮合酶(eNOS)和DUSP4(一种以半胱氨酸为活性残基的双特异性磷酸酶)进行免疫印迹分析发现,这两种酶均被NAC上调。电子顺磁共振自旋捕获进一步证明,NAC可增强细胞产生一氧化氮的能力。长期暴露于Cd(2+)会导致DUSP4降解以及p38和ERK1/2的失控激活,从而导致细胞凋亡。用NAC处理可防止DUSP4降解,并保护细胞免受Cd(2+)诱导的凋亡。此外,DUSP4表达的增加可通过氧化还原调节p38和ERK1/2途径,使其免于过度激活,从而提供一种抵御Cd(2+)毒性的生存机制。DUSP4基因敲低进一步支持了以下假设:DUSP4是一种抗氧化基因,对eNOS表达的调节至关重要,因此可抵御Cd(2+)诱导的应激。丁硫氨酸亚砜胺耗尽细胞内GSH会使细胞更容易受到Cd(2+)诱导的凋亡。用NAC预处理可防止p38过度激活,从而保护内皮免受这种氧化应激。因此,NAC激活DUSP4的发现为未来药物设计提供了一个新靶点。

相似文献

引用本文的文献

本文引用的文献

2
The chemistry and biological activities of N-acetylcysteine.N-乙酰半胱氨酸的化学性质与生物活性。
Biochim Biophys Acta. 2013 Aug;1830(8):4117-29. doi: 10.1016/j.bbagen.2013.04.016. Epub 2013 Apr 22.
5
ERK1/2 MAP kinases: structure, function, and regulation.ERK1/2 MAP kinases:结构、功能与调节。
Pharmacol Res. 2012 Aug;66(2):105-43. doi: 10.1016/j.phrs.2012.04.005. Epub 2012 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验