Ebert Grit, Steininger Anne, Weißmann Robert, Boldt Vivien, Lind-Thomsen Allan, Grune Jana, Badelt Stefan, Heßler Melanie, Peiser Matthias, Hitzler Manuel, Jensen Lars R, Müller Ines, Hu Hao, Arndt Peter F, Kuss Andreas W, Tebel Katrin, Ullmann Reinhard
Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
BMC Genomics. 2014 Jun 29;15:537. doi: 10.1186/1471-2164-15-537.
Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology.
Intrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation.
Our study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.
节段性重复序列(SDs)在染色体上并非均匀分布。对于这种对SD插入的偏向性易感性的原因,我们了解甚少。SDs的积累与基因组不稳定性增加有关,这可能导致结构变异和基因组疾病,如威廉姆斯综合征。尽管有这些不利影响,SDs已在人类基因组中固定下来。以富含间质SDs的7号染色体为重点,我们研究了SDs在进化背景下的分布以及染色体的三维组织,以便深入了解SDs与染色质拓扑结构的相互关系。
染色体内的SDs优先积累在7号染色体上与狨猴2号染色体同源的那些区段。尽管这个曾经紧密的区段在灵长类动物进化过程中已重新分布到三个不同的位点,但我们可以通过关于长距离染色质相互作用的公开数据表明,这三个区间以及因此映射到它们的旁系SDs在细胞核中保持了空间上的接近。聚焦于与威廉姆斯综合征位点病因相关的SD簇,我们通过跨物种比较证明,这些SDs插入在一个拓扑结构域的边界,并且它们位于具有不同DNA构象的区域两侧。
我们的研究表明,核结构与SDs在7号染色体上的传播之间存在联系,要么通过促进区域SD插入,要么通过自身有助于建立高阶染色质组织。后者可以补偿结构重排的高风险,因此可能有助于它们在人类基因组中的进化固定。