Zhao Jing, Feng Yimin, Yan Hui, Chen Yangchao, Wang Jinlan, Chua Balvin, Stuart Charles, Yin Deling
Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA.
J Cell Mol Med. 2014 Aug;18(8):1562-70. doi: 10.1111/jcmm.12339. Epub 2014 Jun 26.
Stem-cell antigen 1-positive (Sca-1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5'-azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β-arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β-arrestin2 in Sca-1+ CSC differentiation, we used β-arrestin2-knockout mice and overexpression strategies. Real-time PCR revealed that β-arrestin2 promoted 5'-azacytizine-induced Sca-1+ CSC differentiation in vitro. Because the microRNA 155 (miR-155) may regulate β-arrestin2 expression, we detected its role and relationship with β-arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR-155. Real-time PCR revealed that miR-155, inhibited by β-arrestin2, impaired 5'-azacytizine-induced Sca-1+ CSC differentiation. On luciferase report assay, miR-155 could inhibit the activity of β-arrestin2 and GSK3β, which suggests a loop pathway between miR-155 and β-arrestin2. Furthermore, β-arrestin2-knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β-arrestin2-Knockout mice, so the activity of GSK3β was regulated by β-arrestin2 not Akt. We transplanted Sca-1+ CSCs from β-arrestin2-knockout mice to mice with myocardial infarction and found similar protective functions as in wild-type mice but impaired arterial elastance. Furthermore, low level of β-arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β-arrestin2/miR-155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.
干细胞抗原1阳性(Sca-1+)心脏干细胞(CSCs)是人类重要的一类心脏干细胞,可促进体内心脏修复,并且在体外经5'-氮杂胞苷处理后可分化为心肌细胞。然而,其潜在的分子机制尚不清楚。β-抑制蛋白2是一种重要的支架蛋白,在心脏中高度表达。为了探究β-抑制蛋白2在Sca-1+心脏干细胞分化中的作用,我们使用了β-抑制蛋白2基因敲除小鼠和过表达策略。实时定量聚合酶链反应显示,β-抑制蛋白2可促进体外5'-氮杂胞苷诱导的Sca-1+心脏干细胞分化。由于微小RNA 155(miR-155)可能调节β-抑制蛋白2的表达,我们检测了其作用以及与β-抑制蛋白2和糖原合酶激酶3(GSK3β)(miR-155的另一个可能靶点)的关系。实时定量聚合酶链反应显示,受β-抑制蛋白2抑制的miR-155会损害5'-氮杂胞苷诱导的Sca-1+心脏干细胞分化。在荧光素酶报告基因检测中,miR-155可抑制β-抑制蛋白2和GSK3β的活性,这表明miR-155与β-抑制蛋白2之间存在一个循环通路。此外,β-抑制蛋白2基因敲除会抑制GSK3β的活性。GSK3β的上游抑制剂Akt在β-抑制蛋白2基因敲除小鼠中受到抑制,因此GSK3β的活性是由β-抑制蛋白2而非Akt调节的。我们将来自β-抑制蛋白2基因敲除小鼠的Sca-1+心脏干细胞移植到心肌梗死小鼠体内,发现其具有与野生型小鼠相似的保护功能,但动脉弹性受损。此外,β-抑制蛋白2水平较低与AKT磷酸化降低和GSK3β磷酸化增加相关,这与体外研究结果相似。β-抑制蛋白2/miR-155/GSK3β通路可能是一种治疗心脏病的新机制。