Tang Feng Ru, Loke Weng Keong
Temasek Laboratories, National University of Singapore.
Int J Radiat Biol. 2015 Jan;91(1):13-27. doi: 10.3109/09553002.2014.937510. Epub 2014 Aug 21.
To review research progress on the molecular mechanisms of low dose ionizing radiation (LDIR)-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability in order to provide clues for therapeutic approaches to enhance biopositive effects (defined as radiation-induced beneficial effects to the organism), and control bionegative effects (defined as radiation-induced harmful effects to the organism) and related human diseases.
Experimental studies have indicated that Ataxia telangiectasia-mutated (ATM), extracellular signal-related kinase (ERK), mitogen-activated protein kinase (MAPK), phospho-c-Jun NH(2)-terminal kinase (JNK) and protein 53 (P53)-related signal transduction pathways may be involved in LDIR-induced hormesis; MAPK, P53 may be important for adaptive response; ATM, cyclooxygenase-2 (COX-2), ERK, JNK, reactive oxygen species (ROS), P53 for radioresistance; COX-2, ERK, MAPK, ROS, tumor necrosis factor receptor alpha (TNFα) for LDIR-induced bystander effect; whereas ATM, ERK, MAPK, P53, ROS, TNFα-related signal transduction pathways are involved in LDIR-induced genomic instability. These results suggest that different manifestations of LDIR-induced cellular responses may have different signal transduction pathways. On the other hand, LDIR-induced different responses may also share the same signal transduction pathways. For instance, P53 has been involved in LDIR-induced hormesis, adaptive response, radioresistance and genomic instability. Current data therefore suggest that caution should be taken when designing therapeutic approaches using LDIR to induce beneficial effects in humans.
综述低剂量电离辐射(LDIR)诱导的兴奋效应、适应性反应、辐射抗性、旁观者效应和基因组不稳定的分子机制的研究进展,以便为增强生物阳性效应(定义为辐射对机体产生的有益效应)、控制生物阴性效应(定义为辐射对机体产生的有害效应)及相关人类疾病的治疗方法提供线索。
实验研究表明,共济失调毛细血管扩张症突变基因(ATM)、细胞外信号调节激酶(ERK)、丝裂原活化蛋白激酶(MAPK)、磷酸化c-Jun氨基末端激酶(JNK)和蛋白53(P53)相关信号转导通路可能参与LDIR诱导的兴奋效应;MAPK、P53对适应性反应可能很重要;ATM、环氧合酶-2(COX-2)、ERK、JNK、活性氧(ROS)、P53与辐射抗性有关;COX-2、ERK、MAPK、ROS、肿瘤坏死因子受体α(TNFα)与LDIR诱导的旁观者效应有关;而ATM、ERK、MAPK、P53、ROS、TNFα相关信号转导通路参与LDIR诱导的基因组不稳定。这些结果表明,LDIR诱导的细胞反应的不同表现可能具有不同的信号转导通路。另一方面,LDIR诱导的不同反应也可能共享相同的信号转导通路。例如,P53参与了LDIR诱导的兴奋效应、适应性反应、辐射抗性和基因组不稳定。因此,目前的数据表明,在设计利用LDIR在人类中诱导有益效应的治疗方法时应谨慎。