Suppr超能文献

双金属钯-铂负载石墨烯促进酶促氧化还原循环用于超灵敏电化学定量分析细胞裂解液中的微小RNA。

Bimetallic Pd-Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates.

作者信息

Cheng Fang-Fang, Zhang Jing-Jing, He Ting-Ting, Shi Jian-Jun, Abdel-Halim E S, Zhu Jun-Jie

机构信息

State Key Lab of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R.China.

出版信息

Analyst. 2014 Aug 21;139(16):3860-5. doi: 10.1039/c4an00777h.

Abstract

The expression of microRNAs (miRNAs) is related to some cancer diseases. Recently, miRNAs have emerged as new candidate diagnostic and prognostic biomarkers for detecting a wide variety of cancers. Due to low levels, short sequences and high sequence homology among family members, the quantitative miRNA analysis is still a challenge. A novel electrochemical biosensor with triple signal amplification for the ultrasensitive detection of miRNA was developed based on phosphatase, redox-cycling amplification, a bimetallic Pd-Pt supported graphene functionalized screen-printed gold electrode, and two stem-loop structured DNAs as target capturers. The proposed biosensor is highly sensitive due to the enhanced electrochemical signal of Pd-Pt supported graphene and sufficiently selective to discriminate the target miRNA from homologous miRNAs in the presence of loop-stem structure probes with T4 DNA ligase. Therefore, this strategy provided a new and ultrasensitive platform for amplified detection and subsequent analysis of miRNA in biomedical research and clinical diagnosis.

摘要

微小RNA(miRNA)的表达与某些癌症疾病相关。最近,miRNA已成为用于检测多种癌症的新型候选诊断和预后生物标志物。由于其水平低、序列短且家族成员间序列同源性高,miRNA的定量分析仍然是一项挑战。基于磷酸酶、氧化还原循环扩增、双金属钯-铂负载的石墨烯功能化丝网印刷金电极以及两个茎环结构的DNA作为靶标捕获剂,开发了一种用于超灵敏检测miRNA的新型三重信号放大电化学生物传感器。所提出的生物传感器由于钯-铂负载石墨烯的电化学信号增强而具有高灵敏度,并且在存在T4 DNA连接酶的茎环结构探针的情况下,具有足够的选择性以区分靶标miRNA与同源miRNA。因此,该策略为生物医学研究和临床诊断中miRNA的扩增检测及后续分析提供了一个新的超灵敏平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验