Cao Zhipeng, Park Joshua, Cho Zang-Hee, Collins Christopher M
Department of Bioengineering, Pennsylvania State University, Hershey, PA, USA.
J Magn Reson Imaging. 2015 May;41(5):1432-9. doi: 10.1002/jmri.24689. Epub 2014 Jun 27.
To predict signal-to-noise ratio (SNR) trends and absorbed energy in magnetic resonance imaging (MRI) of the brain up to 14T.
A human head in an eight-channel transmit/receive coil was simulated with Maxwell and Bloch equations to determine excitation homogeneity with radiofrequency (RF) shimming, image homogeneity, SNR, and absorbed energy in MRI from 1.5 to 14T considering realistic field distributions and relaxation properties.
RF shimming alone achieved a standard deviation in excitation flip angle less than 10° in mid-brain up to 14T, but produced a small region with low excitation on a lower slice. Current reconstruction methods may produce shading artifacts at 14T. SNR increases with a greater-than-linear rate for gradient recalled echo (GRE) sequences having short (2 msec) echo time (TE) and long relaxation time (TR) (∼2.3-fold increase from 7T to 14T), but a less-than-linear rate if TE is 10 msec (∼1.6-fold increase from 7T to 14T). Depending on the sequence, SNR per square root of imaging time may produce a less-than-linear increase with B0 . Whole-head absorbed energy shows a less-than-quadratic increase with B0 (1.7-fold increase from 7T to 14T).
Numerical simulations indicate that with proper preparation and precautions, imaging of the human brain at up to 14T could be performed safely, with advantages in SNR.
预测高达14T的脑部磁共振成像(MRI)中的信噪比(SNR)趋势和吸收能量。
使用麦克斯韦方程和布洛赫方程对置于八通道发射/接收线圈中的人类头部进行模拟,以确定在1.5至14T的MRI中,考虑实际场分布和弛豫特性时,射频(RF)匀场的激发均匀性、图像均匀性、SNR和吸收能量。
仅RF匀场在高达14T的中脑区域实现了激发翻转角的标准偏差小于10°,但在较低层面产生了一个激发较低的小区域。当前的重建方法在14T时可能会产生阴影伪影。对于具有短(2毫秒)回波时间(TE)和长弛豫时间(TR)的梯度回波(GRE)序列,SNR以大于线性的速率增加(从7T到14T约增加2.3倍),但如果TE为10毫秒,则增加速率小于线性(从7T到14T约增加1.6倍)。根据序列不同,每成像时间平方根的SNR随B0的增加可能小于线性。全脑吸收能量随B0的增加小于二次方(从7T到14T增加1.7倍)。
数值模拟表明,通过适当的准备和预防措施,可以安全地进行高达14T的人脑成像,且在SNR方面具有优势。