Takacs T, Jüttler B
Institute of Applied Geometry, Johannes Kepler University, Faculty of Natural Sciences and Engineering, Altenberger Straße 69, 4040 Linz, Austria.
Graph Models. 2012 Nov;74(6):361-372. doi: 10.1016/j.gmod.2012.05.006.
Isogeometric analysis (IGA) is a numerical simulation method which is directly based on the NURBS-based representation of CAD models. It exploits the tensor-product structure of 2- or 3-dimensional NURBS objects to parameterize the physical domain. Hence the physical domain is parameterized with respect to a rectangle or to a cube. Consequently, singularly parameterized NURBS surfaces and NURBS volumes are needed in order to represent non-quadrangular or non-hexahedral domains without splitting, thereby producing a very compact and convenient representation. The Galerkin projection introduces finite-dimensional spaces of test functions in the weak formulation of partial differential equations. In particular, the test functions used in isogeometric analysis are obtained by composing the inverse of the domain parameterization with the NURBS basis functions. In the case of singular parameterizations, however, some of the resulting test functions do not necessarily fulfill the required regularity properties. Consequently, numerical methods for the solution of partial differential equations cannot be applied properly. We discuss the regularity properties of the test functions. For one- and two-dimensional domains we consider several important classes of singularities of NURBS parameterizations. For specific cases we derive additional conditions which guarantee the regularity of the test functions. In addition we present a modification scheme for the discretized function space in case of insufficient regularity. It is also shown how these results can be applied for computational domains in higher dimensions that can be parameterized via sweeping.
等几何分析(IGA)是一种直接基于CAD模型的NURBS表示的数值模拟方法。它利用二维或三维NURBS对象的张量积结构对物理域进行参数化。因此,物理域相对于矩形或立方体进行参数化。相应地,为了在不进行分割的情况下表示非四边形或非六面体域,需要奇异参数化的NURBS曲面和NURBS体,从而产生非常紧凑和方便的表示。伽辽金投影在偏微分方程的弱形式中引入了测试函数的有限维空间。特别地,等几何分析中使用的测试函数是通过将域参数化的逆与NURBS基函数组合得到的。然而,在奇异参数化的情况下,一些所得的测试函数不一定满足所需的正则性属性。因此,偏微分方程的数值求解方法不能正确应用。我们讨论测试函数的正则性属性。对于一维和二维域,我们考虑NURBS参数化的几类重要奇点。对于特定情况,我们推导了保证测试函数正则性的附加条件。此外,我们提出了一种在正则性不足的情况下对离散函数空间的修正方案。还展示了如何将这些结果应用于通过扫掠进行参数化的高维计算域。