Suppr超能文献

循环内皮微颗粒可能来自凋亡的肺毛细血管内皮细胞,参与香烟烟雾暴露大鼠的肺功能下降。

Circulating endothelial microparticles involved in lung function decline in a rat exposed in cigarette smoke maybe from apoptotic pulmonary capillary endothelial cells.

机构信息

Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China.

出版信息

J Thorac Dis. 2014 Jun;6(6):649-55. doi: 10.3978/j.issn.2072-1439.2014.06.26.

Abstract

BACKGROUND

Plasma levels of endothelial microparticles (EMPs), small membrane vesicles, shed from activated or apoptotic endothelial cells are elevated in patients with COPD and in smokers with normal lung function. Whether plasma EMPs levels are elevated in a rat exposed in cigarette smoke, whether the elevated EMPs derived from pulmonary endothelial cell apoptosis, and the relationship between EMP and lung function are obscure.

METHODS

All 60 wister rats were divided into six groups, three groups of ten rats were exposed to cigarette smoke of ten non-filter cigarettes per day, 5 days a week, using a standard smoking machine (Beijing BeiLanBo Company, China) for a period of 2, 4 and 6 months (n=10, respectively). Age-matched three control groups were sham-smoked. Pulmonary function parameters, including the ratio of forced expiratory volume in 0.3 second over forced vital capacity (FEV0.3/FVC) and dynamic compliance (Cdyn), were tested at the end of each period (2, 4, 6 months). Blood samples were collected and platelet-free plasma was isolated. Then CD42b-/CD31+ EMPs were analysed by flow cytometry. In parallel, lungs were removed and Colocalization with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), Hoeschts and CD31 was performed to evaluate pulmonary capillaries-specific apoptosis and identify the origins of the EMPs.

RESULTS

At 2, 4 and 6 months, in comparison with control groups, rats in cigarette smoke exposed groups had a significant increase in CD42b-/CD31+ EMPs (P<0.001, P<0.001, P<0.001, respectively), and Pulmonary function indicated that FEV0.3/FVC (P<0.05, P<0.01, P<0.01, respectively) and Cdyn (P<0.01, P<0.001, P<0.001 respectively) decreased. At the same time, CD42b-/CD31+ EMP counts were negatively correlated with Cdyn (P<0.05). Moreover, in vivo, TUNEL-positive cells co-localized with CD31 in whole lung tissue demonstrated a sequence of apoptosis signal in the cigarette smoke exposed groups.

CONCLUSIONS

CD42b-/CD31+ EMPs may be a potential biomarker for indicating the severity of impairment of pulmonary function in the rats exposed cigarette smoke. The increased EMPs may derive from pulmonary capillaries-specific apoptosis.

摘要

背景

在 COPD 患者和肺功能正常的吸烟者中,内皮细胞释放的小膜囊泡即内皮细胞微颗粒(EMPs)的血浆水平升高。在暴露于香烟烟雾的大鼠中,血浆 EMPs 水平是否升高,升高的 EMPs 是否来自肺内皮细胞凋亡,以及 EMP 与肺功能之间的关系尚不清楚。

方法

将 60 只 Wistar 大鼠分为 6 组,每组 10 只,每天暴露于 10 支无过滤香烟的香烟烟雾中,每周 5 天,使用标准吸烟机(中国北京北蓝波公司)持续 2、4 和 6 个月(n=10,分别)。年龄匹配的 3 个对照组进行假吸烟。在每个时期(2、4、6 个月)结束时测试肺功能参数,包括 0.3 秒用力呼气量与用力肺活量之比(FEV0.3/FVC)和动态顺应性(Cdyn)。收集血液样本并分离血小板自由血浆。然后通过流式细胞术分析 CD42b-/CD31+EMPs。同时,进行末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记(TUNEL)、Hoeschts 和 CD31 共定位,以评估肺毛细血管特异性凋亡并确定 EMPs 的来源。

结果

与对照组相比,在 2、4 和 6 个月时,香烟烟雾暴露组大鼠的 CD42b-/CD31+EMPs 显著增加(P<0.001,P<0.001,P<0.001,分别),并且肺功能表明 FEV0.3/FVC(P<0.05,P<0.01,P<0.01,分别)和 Cdyn(P<0.01,P<0.001,P<0.001,分别)降低。同时,CD42b-/CD31+EMPs 计数与 Cdyn 呈负相关(P<0.05)。此外,体内 TUNEL 阳性细胞与全肺组织中的 CD31 共定位表明香烟烟雾暴露组中存在凋亡信号的顺序。

结论

CD42b-/CD31+EMPs 可能是指示香烟烟雾暴露大鼠肺功能严重受损的潜在生物标志物。增加的 EMPs 可能来自肺毛细血管特异性凋亡。

相似文献

2
Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers.
Am J Respir Crit Care Med. 2011 Jul 15;184(2):224-32. doi: 10.1164/rccm.201012-2061OC. Epub 2011 Mar 11.
3
Persistence of circulating endothelial microparticles in COPD despite smoking cessation.
Thorax. 2016 Dec;71(12):1137-1144. doi: 10.1136/thoraxjnl-2015-208274. Epub 2016 Jul 26.
4
Increased circulating CD31+/CD42b-EMPs in Perthes disease and inhibit HUVECs angiogenesis via endothelial dysfunction.
Life Sci. 2021 Jan 15;265:118749. doi: 10.1016/j.lfs.2020.118749. Epub 2020 Nov 18.
6
Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease.
PLoS One. 2018 Apr 19;13(4):e0195724. doi: 10.1371/journal.pone.0195724. eCollection 2018.
7
Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility.
Thorax. 2012 Dec;67(12):1067-74. doi: 10.1136/thoraxjnl-2011-201395. Epub 2012 Jul 27.
8
Elevated circulating endothelial microparticles (EMPs) in prepubertal children born preterm.
Pediatr Res. 2022 Jun;91(7):1754-1761. doi: 10.1038/s41390-021-01655-8. Epub 2021 Jul 20.

引用本文的文献

1
Channels of Communication: Extracellular Vesicles in Environmental Stress and Human Disease.
Environ Health Perspect. 2024 Jan;132(1):14002. doi: 10.1289/EHP14224. Epub 2024 Jan 25.
2
Seminar: Extracellular Vesicles as Mediators of Environmental Stress in Human Disease.
Environ Health Perspect. 2023 Oct;131(10):104201. doi: 10.1289/EHP12980. Epub 2023 Oct 20.
3
Smoking induces WEE1 expression to promote docetaxel resistance in esophageal adenocarcinoma.
Mol Ther Oncolytics. 2023 Aug 28;30:286-300. doi: 10.1016/j.omto.2023.08.012. eCollection 2023 Sep 21.
4
Extracellular vesicles and COPD: foe or friend?
J Nanobiotechnology. 2023 May 5;21(1):147. doi: 10.1186/s12951-023-01911-5.
6
Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease.
Curr Environ Health Rep. 2022 Sep;9(3):465-476. doi: 10.1007/s40572-022-00357-5. Epub 2022 Apr 21.
7
Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review.
Respir Res. 2022 Apr 5;23(1):82. doi: 10.1186/s12931-022-01984-0.
8
Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care.
Eur Respir Rev. 2021 Jun 1;30(160). doi: 10.1183/16000617.0041-2021. Print 2021 Jun 30.
9
Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases.
Front Mol Biosci. 2021 Jan 29;7:619697. doi: 10.3389/fmolb.2020.619697. eCollection 2020.
10
Extracellular vesicle signalling in atherosclerosis.
Cell Signal. 2020 Nov;75:109751. doi: 10.1016/j.cellsig.2020.109751. Epub 2020 Aug 26.

本文引用的文献

1
Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary.
Am J Respir Crit Care Med. 2013 Feb 15;187(4):347-65. doi: 10.1164/rccm.201204-0596PP. Epub 2012 Aug 9.
2
Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility.
Thorax. 2012 Dec;67(12):1067-74. doi: 10.1136/thoraxjnl-2011-201395. Epub 2012 Jul 27.
3
Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers.
Am J Respir Crit Care Med. 2011 Jul 15;184(2):224-32. doi: 10.1164/rccm.201012-2061OC. Epub 2011 Mar 11.
6
Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis.
Am J Physiol Renal Physiol. 2009 Jul;297(1):F125-37. doi: 10.1152/ajprenal.90666.2008. Epub 2009 Apr 29.
7
Endothelial microparticles in diseases.
Cell Tissue Res. 2009 Jan;335(1):143-51. doi: 10.1007/s00441-008-0710-9. Epub 2008 Nov 7.
9
Association of radiographic emphysema and airflow obstruction with lung cancer.
Am J Respir Crit Care Med. 2008 Oct 1;178(7):738-44. doi: 10.1164/rccm.200803-435OC. Epub 2008 Jun 19.
10
Pathogenesis of COPD. Part III. Inflammation in COPD.
Int J Tuberc Lung Dis. 2008 Apr;12(4):375-80.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验