Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854.
Semin Cell Dev Biol. 2014 Sep;33:25-33. doi: 10.1016/j.semcdb.2014.06.001. Epub 2014 Jun 27.
The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.
秀丽隐杆线虫雄性及其交配行为所需的雄性特异性感觉神经元的研究为多囊蛋白的分子功能以及多囊蛋白纤毛定位所需的机制提供了深入的了解。在人类中,多囊蛋白 1 和多囊蛋白 2 是肾脏功能所必需的;多囊蛋白功能的丧失会导致常染色体显性多囊肾病(ADPKD)。多囊蛋白在秀丽隐杆线虫和哺乳动物的纤毛中定位,这一发现指导了 ADPKD 的研究。多囊蛋白在雄性特异性神经元中形成纤毛受体的发现,也有助于揭示另外两个令人兴奋的新领域:细胞外囊泡的分泌;以及纤毛特化的机制。首先,我们将总结秀丽隐杆线虫中关于多囊蛋白 1 和 2 同源物 LOV-1 和 PKD-2 的表达、定位和功能的研究,并讨论从这项基础研究中获得的见解。与雄性特异性神经元中的多囊蛋白共同表达的分子可能确定多囊蛋白功能和定位的进化保守的分子机制。我们将讨论多囊蛋白在雄性中以细胞外囊泡的形式分泌,从而引起行为改变的发现,这表明这种囊泡为环境中的同种个体提供了一种新的交流形式。在人类中,多囊蛋白包含的细胞外囊泡在尿液中分泌,并可被纤毛摄取,并迅速内化。因此,多囊蛋白包含的细胞外囊泡的通讯也可能利用从线虫到人类进化保守的机制。最后,不同的纤毛显示出结构和功能的差异,使它们专门用于特定的任务,尽管实际上所有的纤毛都是由一个保守的内鞭毛运输(IFT)机制构建的,并具有一些基本的结构特征。对雄性特异性纤毛与研究充分的触角和触须神经元的纤毛进行比较分析,有助于鉴定专门化雄性纤毛的分子。我们将讨论塑造雄性特异性纤毛的分子。雄性特异性神经元中的纤毛的细胞生物学表明,秀丽隐杆线虫可以提供一个极好的纤毛特化模型。