Mivelle Mathieu, Viktorovitch Pierre, Baida Fadi I, El Eter Ali, Xie Zhihua, Vo Than-Phong, Atie Elie, Burr Geoffrey W, Nedeljkovic Dusan, Rauch Jean-Yves, Callard Ségolène, Grosjean Thierry
Opt Express. 2014 Jun 16;22(12):15075-87. doi: 10.1364/OE.22.015075.
We show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, local heating, spectroscopy, and nanoimaging.
我们表明,光子晶体微激光器与纳米天线之间的近场耦合能够实现混合光子系统,该系统在物理上结构紧凑(无需庞大的光学器件),并且能够高效地将光能传输到纳米天线中。实验表明,来自微米级光子晶体激光腔的高达19%的激光功率被传输到一个蝴蝶结孔径纳米天线(BNA),该天线的面积比微激光器的总发射面积小400倍。纳米天线不是直接沉积在光子晶体上,而是制作在光纤尖端的顶点,以便精确地放置在微激光器的近场中。这种混合结构中的光漏斗效应为克服光能传输到纳米尺度时的衍射极限提供了一条途径,因此应该会在紧凑架构中纳米尺度的光增强和限制方面开辟有前景的途径,对生物传感、光镊、局部加热、光谱学和纳米成像等应用产生影响。