Leiner Claude, Nemitz Wolfgang, Schweitzer Susanne, Wenzl Franz P, Hartmann Paul, Hohenester Ulrich, Sommer Christian
Opt Express. 2014 Jun 30;22(13):16048-60. doi: 10.1364/OE.22.016048.
In this study the applicability of an interface procedure for combined ray-tracing and finite difference time domain (FDTD) simulations of optical systems which contain two diffractive gratings is discussed. The simulation of suchlike systems requires multiple FDTD↔RT steps. In order to minimize the error due to the loss of the phase information in an FDTD→RT step, we derive an equation for a maximal coherence correlation function (MCCF) which describes the maximum degree of impact of phase effects between these two different diffraction gratings and which depends on: the spatial distance between the gratings, the degree of spatial coherence of the light source and the diffraction angle of the first grating for the wavelength of light used. This MCCF builds an envelope of the oscillations caused by the distance dependent coupling effects between the two diffractive optical elements. Furthermore, by comparing the far field projections of pure FDTD simulations with the results of an RT→FDTD→RT→FDTD→RT interface procedure simulation we show that this function strongly correlates with the error caused by the interface procedure.
本研究讨论了一种接口程序在包含两个衍射光栅的光学系统的射线追踪和时域有限差分(FDTD)联合模拟中的适用性。此类系统的模拟需要多个FDTD↔RT步骤。为了最小化由于FDTD→RT步骤中相位信息丢失而导致的误差,我们推导了一个最大相干相关函数(MCCF)的方程,该方程描述了这两个不同衍射光栅之间相位效应的最大影响程度,并且取决于:光栅之间的空间距离、光源的空间相干程度以及所用波长的光在第一个光栅处的衍射角。这个MCCF构成了由两个衍射光学元件之间距离相关耦合效应引起的振荡的包络。此外,通过将纯FDTD模拟的远场投影与RT→FDTD→RT→FDTD→RT接口程序模拟的结果进行比较,我们表明该函数与接口程序引起的误差密切相关。