de la Osa Agustín Mendiola, Garcia-Fernandez Javier, Llorente-Cantarero Francisco J, Gil-Campos Mercedes, Muñoz-Villanueva María C, De la Torre Aguilar María J, de la Rosa Ignacio Ibarra, Pérez-Navero Juan L
From the Anaesthesia Department, Universitary General Hospital of Ciudad Real (AMDLO), Anaesthesia and Critical Care Department, Puerta de Hierro University Hospital, Majadahonda Experimental Unit, La Paz University Hospital, Madrid (JGF), Paediatric Intensive Care Unit, Department of Paediatrics, Reina Sofia University Hospital, Maimónides Institute for Biomedical Research of Cordoba (IMIBIC), University of Cordoba (FJLC, MGC, MJDLTA, IIDLR, JLPN), Unit of Methodology in Investigation, Instituto Maimo[Combining Acute Accent]nides de Investigacio[Combining Acute Accent]n Biome[Combining Acute Accent]dica de Co[Combining Acute Accent]rdoba, Cordoba, Spain (IMIBIC) (MCMV).
Eur J Anaesthesiol. 2014 Sep;31(9):457-65. doi: 10.1097/EJA.0000000000000108.
Lung recruitment manoeuvres in neonates during anaesthesia are not performed routinely due to concerns about causing barotrauma, haemodynamic instability and oxidative stress.
To assess the influence of recruitment manoeuvres and positive end-expiratory pressure (PEEP) on haemodynamics, oxidative stress, oxygenation and lung mechanics.
A prospective experimental study.
Experimental Unit, La Paz University Hospital, Madrid, Spain.
Eight newborn piglets (<48 h) with healthy lungs under general anaesthesia.
The recruitment manoeuvres in pressure-controlled ventilation (PCV) were performed along with a constant driving pressure of 15 cmH2O. After the recruitment manoeuvres, PEEP was reduced in a stepwise fashion to find the maximal dynamic compliance step (maxCDyn-PEEP). Blood oxidative stress biomarkers (lipid peroxidation products, protein carbonyls, total glutathione, oxidised glutathione, reduced glutathione and activity of glutathione peroxidase) were analysed.
Haemodynamic parameters, arterial partial pressure of oxygen (paO2), tidal volume (Vt), dynamic compliance (Cdyn) and oxidative stress biomarkers were measured.
The recruitment manoeuvres did not induce barotrauma. Haemodynamic instability was not detected either in the maximum pressure step (overdistension step 5) or during the entire process. No substantial differences were observed in blood oxidative stress parameters analysed as compared with their baseline values (with 0 PEEP) or the values obtained 180 min after the onset of the recruitment manoeuvres (optimal PEEP). Significant maximal values were achieved in step 14 with an increase in paO2 (32.43 ± 8.48 vs. 40.39 ± 15.66 kPa; P = 0.037), Vt (47.75 ± 13.59 vs. 73.87 ± 13.56 ml; P = 0.006) and Cdyn (2.50 ± 0.64 vs. 4.75 ± 0.88 ml cmH2O; P < 0.001). Maximal dynamic compliance step (maxCdyn-PEEP) was 2 cmH2O.
Recruitment manoeuvres in PCV with a constant driving pressure are a well tolerated open-lung strategy in a healthy-lung neonatal animal model under general anaesthesia. The recruitment manoeuvres improve oxygenation parameters and lung mechanics and do not cause barotrauma, haemodynamic instability or oxidative stress.
由于担心引起气压伤、血流动力学不稳定和氧化应激,新生儿麻醉期间的肺复张操作未常规进行。
评估复张操作和呼气末正压(PEEP)对血流动力学、氧化应激、氧合和肺力学的影响。
前瞻性实验研究。
西班牙马德里拉巴斯大学医院实验单元。
8只全身麻醉下肺部健康的新生仔猪(<48小时)。
在压力控制通气(PCV)中进行复张操作,同时保持驱动压力为15cmH₂O。复张操作后,逐步降低PEEP以找到最大动态顺应性步长(maxCDyn-PEEP)。分析血液氧化应激生物标志物(脂质过氧化产物、蛋白质羰基、总谷胱甘肽、氧化型谷胱甘肽、还原型谷胱甘肽和谷胱甘肽过氧化物酶活性)。
测量血流动力学参数、动脉血氧分压(paO₂)、潮气量(Vt)、动态顺应性(Cdyn)和氧化应激生物标志物。
复张操作未引起气压伤。在最大压力步长(过度膨胀步长5)或整个过程中均未检测到血流动力学不稳定。与基线值(PEEP为0时)或复张操作开始后180分钟获得的值(最佳PEEP)相比,所分析的血液氧化应激参数未观察到实质性差异。在第14步达到显著最大值,paO₂升高(32.43±8.48 vs. 40.39±15.66kPa;P = 0.037),Vt升高(47.75±13.59 vs. 73.87±13.56ml;P = 0.006),Cdyn升高(2.50±0.64 vs. 4.75±0.88ml/cmH₂O;P < 0.001)。最大动态顺应性步长(maxCdyn-PEEP)为2cmH₂O。
在全身麻醉下的健康肺新生动物模型中,恒定驱动压力的PCV复张操作是一种耐受性良好的肺开放策略。复张操作可改善氧合参数和肺力学,且不会引起气压伤、血流动力学不稳定或氧化应激。