Abdulle A, Bai Y
ANMC, Mathematics Section, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
ANMC, Mathematics Section, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021). doi: 10.1098/rsta.2013.0388.
A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.
本文描述了一种用于具有多尺度的偏微分方程(PDEs)的数值均匀化和降阶建模技术相结合的通用框架。数值均匀化方法通常能有效地逼近具有多尺度的PDEs的有效解。然而,经典的数值均匀化技术需要求解大量所谓的微观问题,以逼近计算域中选定网格点处的有效数据。对于高维、时间相关或非线性问题,此类计算成本会变得特别高昂。在本文中,我们解释了数值均匀化方法如何从降阶建模技术中受益,这些技术允许识别离线和在线计算过程。有效数据仅在精心选择的一定数量的网格点上精确计算(离线阶段),并在在线阶段进行适当的“插值”,从而使在线成本与单尺度求解器相当。该方法适用于一类具有多尺度的PDEs,包括椭圆型、抛物型、波动型和非线性问题。数值例子,包括非均匀介质中的波传播和非饱和多孔介质中的溶质输运,说明了所提出的方法。