Suppr超能文献

具有初始函数条件的可压缩欧拉方程和欧拉-泊松方程的爆破现象。

Blowup phenomena for the compressible euler and euler-poisson equations with initial functional conditions.

作者信息

Wong Sen, Yuen Manwai

机构信息

Department of Mathematics and Information Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong.

出版信息

ScientificWorldJournal. 2014;2014:580871. doi: 10.1155/2014/580871. Epub 2014 Mar 30.

Abstract

We study, in the radial symmetric case, the finite time life span of the compressible Euler or Euler-Poisson equations in R (N) . For time t ≥ 0, we can define a functional H(t) associated with the solution of the equations and some testing function f. When the pressure function P of the governing equations is of the form P = Kρ (γ) , where ρ is the density function, K is a constant, and γ > 1, we can show that the nontrivial C (1) solutions with nonslip boundary condition will blow up in finite time if H(0) satisfies some initial functional conditions defined by the integrals of f. Examples of the testing functions include r (N-1)ln(r + 1), r (N-1) e (r) , r (N-1)(r (3) - 3r (2) + 3r + ε), r (N-1)sin((π/2)(r/R)), and r (N-1)sinh r. The corresponding blowup result for the 1-dimensional nonradial symmetric case is also given.

摘要

我们在径向对称情形下,研究(\mathbb{R}^N)中可压缩欧拉方程或欧拉 - 泊松方程的有限时间寿命。对于(t\geq0),我们可以定义一个与方程的解以及某个测试函数(f)相关的泛函(H(t))。当控制方程的压力函数(P)具有(P = K\rho^{\gamma})的形式,其中(\rho)是密度函数,(K)是常数,且(\gamma>1)时,我们可以证明,如果(H(0))满足由(f)的积分定义的某些初始泛函条件,那么具有无滑移边界条件的非平凡(C^1)解将在有限时间内爆破。测试函数的例子包括(r^{N - 1}\ln(r + 1))、(r^{N - 1}e^r)、(r^{N - 1}(r^3 - 3r^2 + 3r + \varepsilon))、(r^{N - 1}\sin((\pi/2)(r/R)))以及(r^{N - 1}\sinh r)。还给出了一维非径向对称情形下相应的爆破结果。

相似文献

1
Blowup phenomena for the compressible euler and euler-poisson equations with initial functional conditions.
ScientificWorldJournal. 2014;2014:580871. doi: 10.1155/2014/580871. Epub 2014 Mar 30.
2
Perturbational blowup solutions to the compressible Euler equations with damping.
Springerplus. 2016 Feb 27;5:196. doi: 10.1186/s40064-016-1766-8. eCollection 2016.
3
Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry.
ScientificWorldJournal. 2016;2016:3781760. doi: 10.1155/2016/3781760. Epub 2016 Feb 3.
4
Stabilities for nonisentropic Euler-Poisson equations.
ScientificWorldJournal. 2015;2015:494707. doi: 10.1155/2015/494707. Epub 2015 Mar 16.
5
Lattice Boltzmann method for the compressible Euler equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056702. doi: 10.1103/PhysRevE.69.056702. Epub 2004 May 18.
6
On the role of continuous symmetries in the solution of the three-dimensional Euler fluid equations and related models.
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210050. doi: 10.1098/rsta.2021.0050. Epub 2022 May 9.
7
Converging shocks in elastic-plastic solids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056307. doi: 10.1103/PhysRevE.84.056307. Epub 2011 Nov 14.
8
Chaotic Blowup in the 3D Incompressible Euler Equations on a Logarithmic Lattice.
Phys Rev Lett. 2018 Aug 10;121(6):064501. doi: 10.1103/PhysRevLett.121.064501.
9
Existence of Radial Global Smooth Solutions to the Pressureless Euler-Poisson Equations with Quadratic Confinement.
Arch Ration Mech Anal. 2023;247(4):73. doi: 10.1007/s00205-023-01905-5. Epub 2023 Aug 1.
10
Lower bounds for the life-span of solutions of nonlinear wave equations in three dimensions.
Proc Natl Acad Sci U S A. 1982 Jun;79(12):3933-4. doi: 10.1073/pnas.79.12.3933.

引用本文的文献

1
Stabilities for nonisentropic Euler-Poisson equations.
ScientificWorldJournal. 2015;2015:494707. doi: 10.1155/2015/494707. Epub 2015 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验