Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
Proc Natl Acad Sci U S A. 1982 Jun;79(12):3933-4. doi: 10.1073/pnas.79.12.3933.
The paper deals with strict solutions u(x,t) = u(x(1),x(2),x(3),t) of an equation [Formula: see text] where Du is the set of four first derivatives of u. For given initial values u(x,0) = epsilonF(x), u(t)(x,0) = epsilonG(x), the life span T(epsilon) is defined as the supremum of all t to which the local solution can be extended for all x. Blowup in finite time corresponds to T(epsilon) < infinity. Examples show that this can occur for arbitrarily small epsilon. On the other hand, T(epsilon) must at least be very large for small epsilon. By assuming that a(ik),F,G [unk] C(infinity), that a(ik)(0) = 0, and that F,G have compact support, it is shown that [Formula: see text] for every N. This result had been established previously only for N < 4.
本文研究了方程[u(x,t)=u(x(1),x(2),x(3),t)]的严格解 u(x,t),其中 Du 是 u 的四个一阶导数的集合。对于给定的初始值 u(x,0)=epsilonF(x),u(t)(x,0)=epsilonG(x),寿命 T(epsilon)定义为对于所有 x,局部解可以扩展的所有 t 的上确界。有限时间内的爆炸对应于 T(epsilon)<无穷大。示例表明,对于任意小的 epsilon,这种情况可能会发生。另一方面,对于小的 epsilon,T(epsilon)必须至少非常大。通过假设 a(ik),F,G[unk]C(infinity),a(ik)(0)=0,并且 F,G 具有紧支集,可以证明[Formula: see text]对于每个 N。这个结果之前只在 N<4 时成立。