Ambati Divya V, Wright Edward K, Lehman Ronald A, Kang Daniel G, Wagner Scott C, Dmitriev Anton E
The Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720-A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA; Uniformed Services University of the Health Sciences, Division of Surgery, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
The Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720-A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA; Uniformed Services University of the Health Sciences, Division of Surgery, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA; Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Building 19, Room #2101, 8901 Wisconsin Ave., Bethesda, MD 20889, USA.
Spine J. 2015 Aug 1;15(8):1812-22. doi: 10.1016/j.spinee.2014.06.015. Epub 2014 Jun 28.
Transforaminal lumbar interbody fusion (TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disease. The optimal construct for segmental stability remains unknown.
To compare the stability of fusion constructs using standard (C) and crescent-shaped (CC) polyetheretherketone TLIF cages with unilateral (UPS) or bilateral (BPS) posterior instrumentation.
Five TLIF fusion constructs were compared using finite element (FE) analysis.
A previously validated L3-L5 FE model was modified to simulate decompression and fusion at L4-L5. This model was used to analyze the biomechanics of various unilateral and bilateral TLIF constructs. The inferior surface of the L5 vertebra remained immobilized throughout the load simulation, and a bending moment of 10 Nm was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Various biomechanical parameters were evaluated for intact and implanted models in all loading planes.
All reconstructive conditions displayed decreased motion at L4-L5. Bilateral posterior fixation conferred greater stability when compared with unilateral fixation in left lateral bending. More than 50% of intact motion remained in the left lateral bending with unilateral posterior fixation compared with less than 10% when bilateral pedicle screw fixation was used. Posterior implant stresses for unilateral fixation were six times greater in flexion and up to four times greater in left lateral bending compared with bilateral fixation. No effects on segmental stability or posterior implant stresses were found. An obliquely-placed, single standard cage generated the lowest cage-end plate stress.
Transforaminal lumbar interbody fusion augmentation with bilateral posterior fixation increases fusion construct stability and decreases posterior instrumentation stress. The shape or number of interbody implants does not appear to impact the segmental stability when bilateral pedicle screws are used. Increased posterior instrumentation stresses were observed in all loading modes with unilateral pedicle screw/rod fixation, which may theoretically accelerate implant loosening or increase the risk of construct failure.
经椎间孔腰椎椎间融合术(TLIF)在退行性腰椎疾病的手术治疗中越来越受欢迎。节段稳定性的最佳植入物组合仍不清楚。
比较使用标准(C)和新月形(CC)聚醚醚酮TLIF椎间融合器并单侧(UPS)或双侧(BPS)后路内固定的融合植入物的稳定性。
使用有限元(FE)分析比较五种TLIF融合植入物。
对先前验证的L3-L5有限元模型进行修改,以模拟L4-L5节段的减压和融合。该模型用于分析各种单侧和双侧TLIF植入物的生物力学。在整个载荷模拟过程中,L5椎体下表面保持固定,在L3椎体上施加10 Nm的弯矩以模拟前屈、后伸、侧方弯曲和轴向旋转。评估完整模型和植入模型在所有载荷平面上的各种生物力学参数。
所有重建情况均显示L4-L5节段活动度降低。与单侧固定相比,双侧后路固定在左侧弯时具有更高的稳定性。单侧后路固定时,左侧弯时仍保留超过50%的完整活动度,而使用双侧椎弓根螺钉固定时则不到10%。与双侧固定相比,单侧固定的后路植入物在屈曲时应力大6倍,在左侧弯时应力大4倍。未发现对节段稳定性或后路植入物应力有影响因素。斜向放置的单个标准椎间融合器产生最低的椎间融合器-终板应力。
双侧后路固定增强经椎间孔腰椎椎间融合术可提高融合植入物的稳定性并降低后路内固定应力。当使用双侧椎弓根螺钉时,椎间融合器的形状或数量似乎不影响节段稳定性。在所有载荷模式下,单侧椎弓根螺钉/棒固定均观察到后路内固定应力增加,这在理论上可能加速植入物松动或增加植入物失败的风险。