Suppr超能文献

决策分析模型:当前的方法学挑战。

Decision-analytic models: current methodological challenges.

作者信息

Caro J Jaime, Möller Jörgen

机构信息

McGill University, Canada and Evidera, 430 Bedford Street, Suite 300, Lexington, MA, 02420, US,

出版信息

Pharmacoeconomics. 2014 Oct;32(10):943-50. doi: 10.1007/s40273-014-0183-5.

Abstract

Modelers seeking to help inform decisions about insurance (public or private) coverage of the cost of pharmaceuticals or other health care interventions face various methodological challenges. In this review, which is not meant to be comprehensive, we cover those that in our experience are most vexing. The biggest challenge is getting decision makers to trust the model. This is a major problem because most models undergo only cursory validation; our field has lacked the motivation, time, and data to properly validate models intended to inform health care decisions. Without documented, adequate validation, there is little basis for decision makers to have confidence that the model's results are credible and should be used in a health technology appraisal. A fundamental problem for validation is that the models are very artificial and lack sufficient depth to adequately represent the reality they are simulating. Typically, modelers assume that all resources have infinite capacity so any patient needing care receives it immediately; there are no waiting times or queues, contrary to the common experience in actual practice. Moreover, all the patients enter the model simultaneously at time zero rather than over time as happens in actuality; differences between patients are ignored or minimized and structural modeling choices that make little sense (e.g., using states to represent events) are forced by commitment to a technique (and even to specific spreadsheet software!). The resulting structural uncertainty is rarely addressed, because methods are lacking and even probabilistic analysis of parameter uncertainty suffers from weak consideration of correlation and arbitrary distribution choices. Stakeholders must see to it that models are fit for the stated purpose and provide the best possible estimates given available data-the decisions at stake deserve nothing less.

摘要

试图为有关药品或其他医疗保健干预措施费用的保险(公共或私人)覆盖范围的决策提供信息的建模者面临各种方法学挑战。在本综述中(并非旨在全面涵盖),我们涵盖了那些在我们经验中最棘手的挑战。最大的挑战是让决策者信任该模型。这是一个主要问题,因为大多数模型仅经过粗略验证;我们这个领域缺乏动力、时间和数据来正确验证旨在为医疗保健决策提供信息的模型。没有经过记录的充分验证,决策者几乎没有依据相信模型的结果是可信的,并且应该用于卫生技术评估。验证的一个根本问题是模型非常不真实,缺乏足够的深度来充分代表它们所模拟的现实。通常,建模者假设所有资源都有无限能力,因此任何需要护理的患者都能立即得到护理;不存在等待时间或队列,这与实际实践中的常见情况相反。此外,所有患者在时间零点同时进入模型,而不是像实际情况那样随着时间推移进入;患者之间的差异被忽略或最小化,并且由于对一种技术(甚至特定的电子表格软件!)的执着而被迫做出一些毫无意义的结构建模选择(例如,用状态来表示事件)。由此产生的结构不确定性很少得到解决,因为缺乏方法,甚至参数不确定性的概率分析也因对相关性的考虑不足和任意分布选择而受到影响。利益相关者必须确保模型适合既定目的,并在现有数据的基础上提供尽可能最佳的估计——所涉及的决策理应得到这样的对待。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验