University of Adelaide, Adelaide, South Australia, Australia.
Pharmacoeconomics. 2011 Jan;29(1):51-62. doi: 10.2165/11584610-000000000-00000.
The importance of assessing the accuracy of health economic decision models is widely recognized. Many applied decision models (implicitly) assume that the process of identifying relevant values for a model's input parameters is sufficient to prove the model's accuracy. The selection of infeasible combinations of input parameter values is most likely in the context of probabilistic sensitivity analysis (PSA), where parameter values are drawn from independently specified probability distributions for each model parameter. Model calibration involves the identification of input parameter values that produce model output parameters that best predict observed data.
An empirical comparison of three key calibration issues is presented: the applied measure of goodness of fit (GOF); the search strategy for selecting sets of input parameter values; and the convergence criteria for determining acceptable GOF. The comparisons are presented in the context of probabilistic calibration, a widely applicable approach to calibration that can be easily integrated with PSA. The appendix provides a user's guide to probabilistic calibration, with the reader invited to download the Microsoft® Excel-based model reported in this article.
The calibrated models consistently provided higher mean estimates of the models' output parameter, illustrating the potential gain in accuracy derived from calibrating decision models. Model uncertainty was also reduced. The chi-squared GOF measure differentiated between the accuracy of different parameter sets to a far greater degree than the likelihood GOF measure. The guided search strategy produced higher mean estimates of the models' output parameter, as well as a narrower range of predicted output values, which may reflect greater precision in the identification of candidate parameter sets or more limited coverage of the parameter space. The broader convergence threshold resulted in lower mean estimates of the models' output, and slightly wider ranges, which were closer to the outputs associated with the non-calibrated approach.
Probabilistic calibration provides a broadly applicable method that will improve the relevance of health economic decision models, and simultaneously reduce model uncertainty. The analyses reported in this paper inform the more efficient and accurate application of calibration methods for health economic decision models.
评估健康经济决策模型准确性的重要性已得到广泛认可。许多应用决策模型(隐含地)假设,确定模型输入参数相关值的过程足以证明模型的准确性。在概率敏感性分析(PSA)中,最有可能选择不可行的输入参数值组合,其中每个模型参数的值都从独立指定的概率分布中抽取。模型校准涉及确定输入参数值,这些值可产生最佳预测观察数据的模型输出参数。
本文提出了对三个关键校准问题的实证比较:拟合优度(GOF)的应用度量;用于选择输入参数值集的搜索策略;以及用于确定可接受 GOF 的收敛标准。这些比较是在概率校准的背景下进行的,概率校准是一种广泛适用的校准方法,可轻松与 PSA 集成。附录提供了概率校准的用户指南,邀请读者下载本文中报告的基于 Microsoft®Excel 的模型。
校准后的模型始终提供了模型输出参数的更高均值估计值,说明了从校准决策模型中获得的准确性提高的潜力。模型不确定性也降低了。卡方 GOF 度量比似然 GOF 度量更能区分不同参数集的准确性。有指导的搜索策略产生了更高的模型输出参数均值,以及更窄的预测输出值范围,这可能反映了候选参数集的识别精度更高,或者参数空间的覆盖范围更有限。更广泛的收敛阈值导致模型输出的均值更低,范围稍宽,这更接近非校准方法相关的输出。
概率校准提供了一种广泛适用的方法,可提高健康经济决策模型的相关性,同时降低模型不确定性。本文报告的分析为更高效、更准确地应用健康经济决策模型的校准方法提供了信息。