Suppr超能文献

单个成纤维细胞中的张力稳态

Tensional homeostasis in single fibroblasts.

作者信息

Webster Kevin D, Ng Win Pin, Fletcher Daniel A

机构信息

Biophysics Graduate Group, University of California, Berkeley, California; Department of Bioengineering, University of California, Berkeley, California.

Department of Bioengineering, University of California, Berkeley, California; University of California Berkeley/University of California San Francisco Graduate Group in Bioengineering, Berkeley, California.

出版信息

Biophys J. 2014 Jul 1;107(1):146-55. doi: 10.1016/j.bpj.2014.04.051.

Abstract

Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.

摘要

贴壁细胞通过肌动蛋白-肌球蛋白收缩产生力量来移动、改变形状并感知周围环境的力学特性。尽管机械扰动可能会改变张力,但人们认为它们能与周围环境保持一定的张力水平,这一概念被称为张力稳态。有人提出,张力稳态失调会导致组织紊乱,并促进癌症等疾病的发展。然而,张力稳态是否在单细胞水平上起作用尚不清楚。在这里,我们直接测试单个成纤维细胞在不改变铺展面积或底物弹性的情况下受到机械位移时调节张力的能力。我们使用反馈控制的原子力显微镜来测量和调节单个收缩细胞在纤连蛋白图案化的原子力显微镜悬臂和盖玻片上铺展时的力和位移。我们发现,当细胞填充微图案区域时,它们会达到一个对刚度变化不敏感的稳态收缩力和高度。成纤维细胞不是维持恒定的张力,而是以应变率依赖的方式响应机械位移来改变其收缩力,从而导致新的稳定稳态力和高度。这种反应受肌动蛋白交联蛋白α-辅肌动蛋白过表达的影响,流变学测量表明细胞弹性的变化也是应变率依赖的。我们发现的是张力缓冲而非稳态,这使得细胞能够根据其位移方式在不同的张力状态之间转换,从而对组织生长过程中的缓慢变形以及与损伤相关的快速变形做出不同反应。

相似文献

1
Tensional homeostasis in single fibroblasts.单个成纤维细胞中的张力稳态
Biophys J. 2014 Jul 1;107(1):146-55. doi: 10.1016/j.bpj.2014.04.051.
6

引用本文的文献

6
Cell-extracellular matrix mechanotransduction in 3D.三维细胞-细胞外基质力学转导。
Nat Rev Mol Cell Biol. 2023 Jul;24(7):495-516. doi: 10.1038/s41580-023-00583-1. Epub 2023 Feb 27.
8
The Stiffness-Sensitive Transcriptome of Human Tendon Stromal Cells.人肌腱基质细胞的刚性敏感转录组。
Adv Healthc Mater. 2023 Mar;12(7):e2101216. doi: 10.1002/adhm.202101216. Epub 2023 Jan 20.

本文引用的文献

2
Analysis of turnover dynamics of the submembranous actin cortex.分析膜下肌动蛋白皮层的周转率动态。
Mol Biol Cell. 2013 Mar;24(6):757-67. doi: 10.1091/mbc.E12-06-0485. Epub 2013 Jan 23.
4
The first World Cell Race.首届世界细胞竞赛。
Curr Biol. 2012 Sep 11;22(17):R673-5. doi: 10.1016/j.cub.2012.07.052.
8
Actin filaments as tension sensors.肌动蛋白丝作为张力传感器。
Curr Biol. 2012 Feb 7;22(3):R96-101. doi: 10.1016/j.cub.2011.12.010.
9
Actin filament curvature biases branching direction.肌动蛋白丝曲率使分支方向发生偏差。
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2913-8. doi: 10.1073/pnas.1114292109. Epub 2012 Jan 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验