Wang Xia, Clarke Julia A
Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78712.
Evolution. 2014 Oct;68(10):2847-60. doi: 10.1111/evo.12486. Epub 2014 Aug 18.
Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including "Pelecaniformes," Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of "Pelecaniformes" (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing-propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins.
先前的研究表明,鸟类翅膀各部分(即肱骨、尺骨、腕掌骨)的相对比例与功能和生态相关,但在系统发育背景下,这些方面很少被研究。包括“鹈形目”、鹳形目、鹱形目、企鹅目和潜鸟目的水鸟形成了一个得到高度支持的进化枝,并且发展出了多种多样的翅膀形态和觅食生态。在本研究中,在系统发育背景下评估了水鸟进化枝中的前肢差异。通过佩格尔的λ、布隆伯格的K和置换检验来评估系统发育信号。我们发现,不同的水鸟进化枝根据前肢各部分的比例明显分开,这些比例与系统发育显著相关,但与飞行方式无关。“鹈形目”的大多数传统类群(如鹈鹕、鸬鹚和鲣鸟)与鹳形目(鹭和鹳)聚在一起,占据的形态空间减小。这些分类单元在系统发育上密切相关,但表现出广泛的生态和飞行方式。鹱形目(如海燕、信天翁和剪水鹱)占据广泛的形态空间,主要特征是腕掌骨和尺骨相对长度的变化。潜鸟目(潜鸟)令人惊讶地占据了与潜水海燕和企鹅最接近的翅膀形态空间。这个结果是否可能反映了水鸟进化枝中翅膀比例的祖征或功能信号尚不清楚。一种检测系统发育中显著速率变化的贝叶斯方法发现了两个这样的变化。在企鹅目+鹱形目这两个姐妹进化枝的基部,推断尺骨和腕掌骨的进化变化速率增加。因此,在翼推进潜水类群失去飞行能力之前,翅膀形状就开始发生变化。在企鹅的祖先类群中发现了几个变化速率变慢的情况。