Chen Yi-Chun, Colvin E Scott, Griffin Katherine E, Maier Bernhard F, Fueger Patrick T
Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Diabetologia. 2014 Oct;57(10):2066-75. doi: 10.1007/s00125-014-3311-z. Epub 2014 Jul 4.
AIMS/HYPOTHESIS: EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development.
We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6 (+/-)) and their wild-type littermates (Mig6 (+/+)) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells.
Whereas STZ-treated Mig6 (+/+) mice became diabetic, STZ-treated Mig6 (+/-) mice remained glucose tolerant. In addition, STZ-treated Mig6 (+/-) mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6 (+/-) and Mig6 (+/+) mice, the preserved glucose tolerance in STZ-treated Mig6 (+/-) mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6 (+/-) mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits DNA damage repair. STZ-treated Mig6 (+/-) mice also have increased beta cell mass recovery.
CONCLUSIONS/INTERPRETATION: Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cells.
目的/假设:在啮齿动物模型中,联合使用表皮生长因子(EGF)和胃泌素可逆转1型糖尿病。然而,这一方法未能转化为临床治疗手段,这表明EGF介导的组织修复是一个复杂的过程,值得进一步研究。因此,我们旨在确定有丝分裂原诱导基因6蛋白(MIG6)对表皮生长因子受体(EGFR)的反馈抑制是否会限制EGF治疗的效果并促进1型糖尿病的发展。
我们用多次低剂量链脲佐菌素(STZ)处理Mig6(也称为Errfi1)单倍不足小鼠(Mig6(+/-))及其野生型同窝小鼠(Mig6(+/+)),并通过葡萄糖稳态测试和组织学分析监测糖尿病的发展。我们还研究了MIG6介导的细胞因子诱导的EGFR信号脱敏以及832/13 INS-1β细胞中的DNA损伤修复反应。
用STZ处理的Mig6(+/+)小鼠患糖尿病,而用STZ处理的Mig6(+/-)小鼠仍具有葡萄糖耐量。此外,用STZ处理的Mig6(+/-)小鼠在葡萄糖刺激后表现出循环胰岛素水平保持不变。由于Mig6(+/-)和Mig6(+/+)小鼠之间的胰岛素敏感性相似,用STZ处理的Mig6(+/-)小鼠中保留的葡萄糖耐量可能是由于β细胞功能得以保留。从用STZ处理的Mig6(+/-)小鼠分离的胰岛中Pdx1和Irs2 mRNA水平升高支持了这一点。相反,在分离的胰岛中过表达MIG6会损害葡萄糖刺激的胰岛素分泌。在832/13细胞中的研究表明,细胞因子诱导的MIG6会阻碍EGFR激活并抑制DNA损伤修复。用STZ处理的Mig6(+/-)小鼠的β细胞质量恢复也增加。
结论/解读:降低Mig6表达可促进β细胞修复并减轻实验性糖尿病的发展,这表明MIG6可能是保护β细胞的新型治疗靶点。