Zhang Yanxue, Zhao Dongmei, Liu Jinxing
College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050000, China.
College of Information Technology, Hebei Normal University, Shijiazhuang 050000, China.
ScientificWorldJournal. 2014;2014:374260. doi: 10.1155/2014/374260. Epub 2014 May 28.
The biggest difficulty of hidden Markov model applied to multistep attack is the determination of observations. Now the research of the determination of observations is still lacking, and it shows a certain degree of subjectivity. In this regard, we integrate the attack intentions and hidden Markov model (HMM) and support a method to forecasting multistep attack based on hidden Markov model. Firstly, we train the existing hidden Markov model(s) by the Baum-Welch algorithm of HMM. Then we recognize the alert belonging to attack scenarios with the Forward algorithm of HMM. Finally, we forecast the next possible attack sequence with the Viterbi algorithm of HMM. The results of simulation experiments show that the hidden Markov models which have been trained are better than the untrained in recognition and prediction.
将隐马尔可夫模型应用于多步攻击的最大困难在于观测值的确定。目前关于观测值确定的研究仍很缺乏,且表现出一定程度的主观性。对此,我们将攻击意图与隐马尔可夫模型(HMM)相结合,支持一种基于隐马尔可夫模型预测多步攻击的方法。首先,我们使用HMM的鲍姆-韦尔奇算法训练现有的隐马尔可夫模型。然后,我们使用HMM的前向算法识别属于攻击场景的警报。最后,我们使用HMM的维特比算法预测下一个可能的攻击序列。模拟实验结果表明,经过训练的隐马尔可夫模型在识别和预测方面比未训练的模型更好。