Suppr超能文献

利用带多个测量值的校准隐马尔可夫模型进行水下声信号检测。

Underwater Acoustic Signal Detection Using Calibrated Hidden Markov Model with Multiple Measurements.

机构信息

Department of Ocean Systems Engineering, Sejong University, Seoul 05006, Korea.

Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon 34103, Korea.

出版信息

Sensors (Basel). 2022 Jul 6;22(14):5088. doi: 10.3390/s22145088.

Abstract

It is important to find signals of interest (SOIs) when operating sonar systems. A threshold-based method is generally used for SOI detection. However, it induces a high false alarm rate at a low signal-to-noise ratio. On the other side, machine-learning-based detection is performed to obtain more reliable detection results using abundant training data, costing intensive time and labor. We propose a method with favorable detection performance by using a hidden Markov model (HMM) for sequential acoustic data, which requires no separate training data. Since the detection results from HMM are significantly affected by the random initial parameters of HMM, the genetic algorithm (GA) is adopted to reduce the sensitivity of the initial parameters. The tuned initial parameters from GA are used as a start point for the subsequent Baum-Welch algorithm updating the HMM parameters. Furthermore, multiple measurements from arrays are exploited both in determining the proper initial parameters with GA and updating the parameters with the Baum-Welch algorithm. In contrast to the standard random selection of the initial point with single measurement, a stable initial point setting by the GA ensures improved SOI detections with the Baum-Welch algorithm using the multiple measurements, which are demonstrated in passive and active acoustic data. Particularly, the proposed method shows the most confidential detection in finding weak elastic surface waves from target, compared to existing methods such as conventional HMM.

摘要

在声纳系统运行时,找到感兴趣的信号(SOIs)很重要。通常使用基于阈值的方法进行 SOI 检测。但是,在信噪比低的情况下,它会导致高误报率。另一方面,基于机器学习的检测是使用丰富的训练数据来获得更可靠的检测结果,这需要大量的时间和劳动力。我们提出了一种使用隐马尔可夫模型(HMM)对序列声学数据进行检测的方法,该方法不需要单独的训练数据,具有良好的检测性能。由于 HMM 的检测结果受到 HMM 随机初始参数的显著影响,因此采用遗传算法(GA)来降低初始参数的敏感性。GA 调整的初始参数用作后续 Baum-Welch 算法更新 HMM 参数的起点。此外,利用来自阵列的多个测量值来确定 GA 中的适当初始参数和使用 Baum-Welch 算法更新参数。与使用单个测量值的标准随机选择初始点相比,GA 的稳定初始点设置可确保使用多个测量值的 Baum-Welch 算法提高 SOI 检测的稳定性,这在被动和主动声学数据中得到了验证。特别是,与传统 HMM 等现有方法相比,该方法在从目标中找到弱弹性表面波时表现出最准确的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7d/9319422/a0168b86dd72/sensors-22-05088-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验