CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China.
ACS Nano. 2014 Jul 22;8(7):7260-71. doi: 10.1021/nn502325j. Epub 2014 Jul 8.
We have performed fundamental assays of gold nanocages (AuNCs) as intrinsic inorganic photosensitizers mediating generation of reactive oxygen species (ROS) by plasmon-enabled photochemistry under near-infrared (NIR) one/two-photon irradiation. We disclosed that NIR light excited hot electrons transform into either ROS or hyperthermia. Electron spin resonance spectroscopy was applied to demonstrate the production of three main radical species, namely, singlet oxygen ((1)O2), superoxide radical anion (O2(-•)), and hydroxyl radical ((•)OH). The existence of hot electrons from irradiated AuNCs was confirmed by a well-designed photoelectrochemical experiment based on a three-electrode system. It could be speculated that surface plasmons excited in AuNCs first decay into hot electrons, and then the generated hot electrons sensitize oxygen to form ROS through energy and electron transfer modes. We also compared AuNCs' ROS generation efficiency in different surface chemical environments under one/two-photon irradiation and verified that, compared with one-photon irradiation, two-photon irradiation could bring about much more ROS. Furthermore, in vitro, under two-photon irradiation, ROS can trigger mitochondrial depolarization and caspase protein up-regulation to initiate tumor cell apoptosis. Meanwhile, hyperthermia mainly induces tumor cell necrosis. Our findings suggest that plasmon-mediated ROS and hyperthermia can be facilely regulated for optimized anticancer phototherapy.
我们对金纳米笼(AuNCs)作为内在无机光敏剂进行了基础检测,这种光敏剂在近红外(NIR)单/双光子辐照下通过等离子体增强光化学介导活性氧(ROS)的产生。我们揭示了 NIR 光激发的热电子可以转化为 ROS 或热疗。电子自旋共振光谱被用于证明三种主要自由基物质的产生,即单线态氧((1)O2)、超氧自由基阴离子(O2(-•))和羟基自由基((•)OH)。基于三电极系统的精心设计的光电化学实验证实了辐照 AuNCs 中热电子的存在。可以推测,AuNCs 中激发的表面等离子体首先衰变成热电子,然后生成的热电子通过能量和电子转移模式敏化氧气形成 ROS。我们还比较了在单/双光子辐照下 AuNCs 在不同表面化学环境中的 ROS 生成效率,并验证了与单光子辐照相比,双光子辐照可以产生更多的 ROS。此外,在体外,在双光子辐照下,ROS 可以引发线粒体去极化和半胱天冬酶蛋白上调,从而引发肿瘤细胞凋亡。同时,热疗主要诱导肿瘤细胞坏死。我们的研究结果表明,等离子体介导的 ROS 和热疗可以轻松调节,以实现优化的抗癌光疗。