Suppr超能文献

优先考虑词汇模式以增加生物医学本体中的公理化。定位和模块化的作用。

Prioritising lexical patterns to increase axiomatisation in biomedical ontologies. The role of localisation and modularity.

作者信息

Quesada-Martínez M, Fernández-Breis J T, Stevens R, Mikroyannidi E

机构信息

Manuel Quesada-Martínez, Universidad de Murcia, Departamento de Informática y Sistemas, Facultad de Informática, Campus de Espinardo, 30100 Murcia, Spain, E-mail:

出版信息

Methods Inf Med. 2015;54(1):56-64. doi: 10.3414/ME13-02-0026. Epub 2014 Jul 4.

Abstract

INTRODUCTION

This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems".

OBJECTIVES

In previous work, we have defined methods for the extraction of lexical patterns from labels as an initial step towards semi-automatic ontology enrichment methods. Our previous findings revealed that many biomedical ontologies could benefit from enrichment methods using lexical patterns as a starting point.Here, we aim to identify which lexical patterns are appropriate for ontology enrichment, driving its analysis by metrics to prioritised the patterns.

METHODS

We propose metrics for suggesting which lexical regularities should be the starting point to enrich complex ontologies. Our method determines the relevance of a lexical pattern by measuring its locality in the ontology, that is, the distance between the classes associated with the pattern, and the distribution of the pattern in a certain module of the ontology. The methods have been applied to four significant biomedical ontologies including the Gene Ontology and SNOMED CT.

RESULTS

The metrics provide information about the engineering of the ontologies and the relevance of the patterns. Our method enables the suggestion of links between classes that are not made explicit in the ontology. We propose a prioritisation of the lexical patterns found in the analysed ontologies.

CONCLUSIONS

The locality and distribution of lexical patterns offer insights into the further engineering of the ontology. Developers can use this information to improve the axiomatisation of their ontologies.

摘要

引言

本文是《医学信息方法》关于“健康系统中管理互操作性和复杂性”焦点主题的一部分。

目的

在之前的工作中,我们定义了从标签中提取词汇模式的方法,作为迈向半自动本体丰富方法的第一步。我们之前的研究结果表明,许多生物医学本体可以从以词汇模式为起点的丰富方法中受益。在此,我们旨在确定哪些词汇模式适合本体丰富,通过指标驱动对这些模式进行分析以确定优先级。

方法

我们提出了用于建议哪些词汇规则应作为丰富复杂本体起点的指标。我们的方法通过测量词汇模式在本体中的局部性(即与该模式相关的类之间的距离)以及该模式在本体的某个模块中的分布来确定其相关性。这些方法已应用于包括基因本体和SNOMED CT在内的四个重要生物医学本体。

结果

这些指标提供了有关本体工程和模式相关性的信息。我们的方法能够建议本体中未明确建立的类之间的联系。我们对在分析的本体中发现的词汇模式进行了优先级排序。

结论

词汇模式的局部性和分布为本体的进一步工程提供了见解。开发者可以利用这些信息来改进其本体的公理体系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验