Suppr超能文献

COHeRE:用于本体质量保证的跨本体层次关系检查

COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.

作者信息

Cui Licong

机构信息

Department of EECS, Case Western Reserve University, Cleveland, OH Division of Medical Informatics, Case Western Reserve University, Cleveland, OH.

出版信息

AMIA Annu Symp Proc. 2015 Nov 5;2015:456-65. eCollection 2015.

Abstract

Biomedical ontologies play a vital role in healthcare information management, data integration, and decision support. Ontology quality assurance (OQA) is an indispensable part of the ontology engineering cycle. Most existing OQA methods are based on the knowledge provided within the targeted ontology. This paper proposes a novel cross-ontology analysis method, Cross-Ontology Hierarchical Relation Examination (COHeRE), to detect inconsistencies and possible errors in hierarchical relations across multiple ontologies. COHeRE leverages the Unified Medical Language System (UMLS) knowledge source and the MapReduce cloud computing technique for systematic, large-scale ontology quality assurance work. COHeRE consists of three main steps with the UMLS concepts and relations as the input. First, the relations claimed in source vocabularies are filtered and aggregated for each pair of concepts. Second, inconsistent relations are detected if a concept pair is related by different types of relations in different source vocabularies. Finally, the uncovered inconsistent relations are voted according to their number of occurrences across different source vocabularies. The voting result together with the inconsistent relations serve as the output of COHeRE for possible ontological change. The highest votes provide initial suggestion on how such inconsistencies might be fixed. In UMLS, 138,987 concept pairs were found to have inconsistent relationships across multiple source vocabularies. 40 inconsistent concept pairs involving hierarchical relationships were randomly selected and manually reviewed by a human expert. 95.8% of the inconsistent relations involved in these concept pairs indeed exist in their source vocabularies rather than being introduced by mistake in the UMLS integration process. 73.7% of the concept pairs with suggested relationship were agreed by the human expert. The effectiveness of COHeRE indicates that UMLS provides a promising environment to enhance qualities of biomedical ontologies by performing cross-ontology examination.

摘要

生物医学本体在医疗信息管理、数据集成和决策支持中发挥着至关重要的作用。本体质量保证(OQA)是本体工程周期中不可或缺的一部分。大多数现有的OQA方法是基于目标本体内提供的知识。本文提出了一种新颖的跨本体分析方法,即跨本体层次关系检查(COHeRE),以检测多个本体之间层次关系中的不一致性和可能的错误。COHeRE利用统一医学语言系统(UMLS)知识源和MapReduce云计算技术来进行系统的大规模本体质量保证工作。COHeRE以UMLS概念和关系为输入,包括三个主要步骤。首先,针对每对概念,对源词汇表中声明的关系进行筛选和汇总。其次,如果一个概念对在不同源词汇表中通过不同类型的关系相关联,则检测到不一致的关系。最后,根据不同源词汇表中出现的次数对发现的不一致关系进行投票。投票结果与不一致关系一起作为COHeRE的输出,用于可能的本体变更。得票最高的结果为如何修复此类不一致性提供了初步建议。在UMLS中,发现有138,987个概念对在多个源词汇表中存在不一致的关系。随机选择了40个涉及层次关系的不一致概念对,并由一位人类专家进行人工审核。这些概念对中涉及的不一致关系有95.8%确实存在于其源词汇表中,而不是在UMLS集成过程中错误引入的。人类专家同意73.7%的具有建议关系的概念对。COHeRE的有效性表明,UMLS通过进行跨本体检查为提高生物医学本体的质量提供了一个有前景的环境。

相似文献

1
COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.
AMIA Annu Symp Proc. 2015 Nov 5;2015:456-65. eCollection 2015.
2
A method exploiting syntactic patterns and the UMLS semantics for aligning biomedical ontologies: the case of OBO disease ontologies.
Int J Med Inform. 2007 Dec;76 Suppl 3:S353-61. doi: 10.1016/j.ijmedinf.2007.03.004. Epub 2007 May 22.
3
Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.
J Biomed Inform. 2017 May;69:33-42. doi: 10.1016/j.jbi.2017.03.007. Epub 2017 Mar 14.
6
A Neuro-ontology for the neurological examination.
BMC Med Inform Decis Mak. 2020 Mar 4;20(1):47. doi: 10.1186/s12911-020-1066-7.
7
Auditing the multiply-related concepts within the UMLS.
J Am Med Inform Assoc. 2014 Oct;21(e2):e185-93. doi: 10.1136/amiajnl-2013-002227. Epub 2014 Jan 24.

引用本文的文献

1
Extending import detection algorithms for concept import from two to three biomedical terminologies.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 10):272. doi: 10.1186/s12911-020-01290-z.
3
A review of auditing techniques for the Unified Medical Language System.
J Am Med Inform Assoc. 2020 Oct 1;27(10):1625-1638. doi: 10.1093/jamia/ocaa108.
4
Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.
J Biomed Inform. 2018 Apr;80:1-13. doi: 10.1016/j.jbi.2018.02.010. Epub 2018 Feb 17.

本文引用的文献

2
Mining Relation Reversals in the Evolution of SNOMED CT Using MapReduce.
AMIA Jt Summits Transl Sci Proc. 2015 Mar 23;2015:46-50. eCollection 2015.
3
MEDCIS: Multi-Modality Epilepsy Data Capture and Integration System.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1248-57. eCollection 2014.
4
MaPLE: A MapReduce Pipeline for Lattice-based Evaluation and Its Application to SNOMED CT.
Proc IEEE Int Conf Big Data. 2014 Oct;2014:754-759. doi: 10.1109/BigData.2014.7004301.
5
Using SPARQL to Test for Lattices: application to quality assurance in biomedical ontologies.
Semant Web ISWC. 2010;6497:273-288. doi: 10.1007/978-3-642-17749-1_18.
6
Ontology-based data integration between clinical and research systems.
PLoS One. 2015 Jan 14;10(1):e0116656. doi: 10.1371/journal.pone.0116656. eCollection 2015.
7
Using the wisdom of the crowds to find critical errors in biomedical ontologies: a study of SNOMED CT.
J Am Med Inform Assoc. 2015 May;22(3):640-8. doi: 10.1136/amiajnl-2014-002901. Epub 2014 Oct 23.
8
Scalable quality assurance for large SNOMED CT hierarchies using subject-based subtaxonomies.
J Am Med Inform Assoc. 2015 May;22(3):507-18. doi: 10.1136/amiajnl-2014-003151. Epub 2014 Oct 21.
9
Complex epilepsy phenotype extraction from narrative clinical discharge summaries.
J Biomed Inform. 2014 Oct;51:272-9. doi: 10.1016/j.jbi.2014.06.006. Epub 2014 Jun 26.
10
My Corporis Fabrica: an ontology-based tool for reasoning and querying on complex anatomical models.
J Biomed Semantics. 2014 May 6;5:20. doi: 10.1186/2041-1480-5-20. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验