Suppr超能文献

基于稀疏表示的海豚哨声类型分类

Sparse representation for classification of dolphin whistles by type.

作者信息

Esfahanian M, Zhuang H, Erdol N

机构信息

Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431

出版信息

J Acoust Soc Am. 2014 Jul;136(1):EL1-7. doi: 10.1121/1.4881320.

Abstract

A compressive-sensing approach called Sparse Representation Classifier (SRC) is applied to the classification of bottlenose dolphin whistles by type. The SRC algorithm constructs a dictionary of whistles from the collection of training whistles. In the classification phase, an unknown whistle is represented sparsely by a linear combination of the training whistles and then the call class can be determined with an l1-norm optimization procedure. Experimental studies conducted in this research reveal the advantages and limitations of the proposed method against some existing techniques such as K-Nearest Neighbors and Support Vector Machines in distinguishing different vocalizations.

摘要

一种名为稀疏表示分类器(SRC)的压缩感知方法被应用于宽吻海豚叫声类型的分类。SRC算法从训练叫声的集合中构建一个叫声字典。在分类阶段,一个未知叫声通过训练叫声的线性组合被稀疏表示,然后通过l1范数优化过程确定叫声类别。本研究中进行的实验研究揭示了该方法相对于一些现有技术(如K近邻和支持向量机)在区分不同发声方面的优点和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验