Harahush Blake K, Hart Nathan S, Collin Shaun P
School of Biomedical Sciences, The University of Queensland, Brisbane, Qld., Australia.
Brain Behav Evol. 2014;83(4):286-300. doi: 10.1159/000361036. Epub 2014 Jul 1.
The development of the visual system in anamniotic vertebrates is a continual process, allowing for ontogenetic changes in retinal topography and spatial resolving power. We examined the number and distribution of retinal ganglion cells in wholemounted retinae throughout the protracted embryonic development (∼5 months) of a chondrichthyan, i.e. the brown-banded bamboo shark Chiloscyllium punctatum, from the beginning of retinal cell differentiation (approximately halfway through embryogenesis) to adulthood. We also identified and quantified the number of apoptosed cells within the ganglion cell layer to evaluate the contribution of apoptosis to changes in retinal topography. C. punctatum undergoes rapid changes in ganglion cell distribution during embryogenesis, where high levels of apoptosis, especially around the retinal periphery, result in relative increases in ganglion cell density in the central retina which progressively extend nasally and temporally to form a meridional band at hatching. After hatching, C. punctatum forms and maintains a horizontal streak, showing only minor changes in topography during growth, with basal levels of apoptosis. The total number of retinal ganglion cells reaches 547,881 in adult sharks, but the mean (3,228 cells·mm(-2)) and peak (4,983 cells·mm(-2)) retinal ganglion cell densities are highest around the time of hatching. Calculated estimates of spatial resolving power, based on ganglion cell spacing (assuming a hexagonal mosaic) and assessment of the focal length from cryosections of the eye, increase from 1.47 cycles·degree(-1) during embryogenesis to 4.29 cycles·degree(-1) in adults. The increase in spatial resolving power across the retinal meridian would allow this species to hunt and track faster, more mobile prey as it reaches maturity.
无羊膜脊椎动物视觉系统的发育是一个持续的过程,这使得视网膜地形图和空间分辨能力在个体发育过程中发生变化。我们研究了一种软骨鱼类,即褐带竹鲨(Chiloscyllium punctatum)在整个漫长胚胎发育过程(约5个月)中全视网膜中视网膜神经节细胞的数量和分布,该过程从视网膜细胞分化开始(大约在胚胎发育的中期)直至成年。我们还识别并量化了神经节细胞层内凋亡细胞的数量,以评估凋亡对视网膜地形图变化的作用。在胚胎发育过程中,褐带竹鲨的神经节细胞分布发生快速变化,其中高水平的凋亡,尤其是在视网膜周边区域,导致中央视网膜中神经节细胞密度相对增加,这种增加逐渐向鼻侧和颞侧延伸,在孵化时形成一条子午线带。孵化后,褐带竹鲨形成并维持一条水平条纹,在生长过程中视网膜地形图仅发生微小变化,凋亡水平较低。成年鲨鱼的视网膜神经节细胞总数达到547,881个,但视网膜神经节细胞的平均密度(3,228个细胞·mm⁻²)和峰值密度(4,983个细胞·mm⁻²)在孵化时最高。基于神经节细胞间距(假设为六边形镶嵌)计算的空间分辨能力估计值,以及根据眼睛冰冻切片评估的焦距,从胚胎发育期间的1.47周/度增加到成年时的4.29周/度。随着该物种成熟,整个视网膜子午线方向上空间分辨能力的提高将使其能够更快地捕食和追踪移动性更强的猎物。