Yang Ting, Dong Jianji, Lu Liangjun, Zhou Linjie, Zheng Aoling, Zhang Xinliang, Chen Jianping
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.
Sci Rep. 2014 Jul 4;4:5581. doi: 10.1038/srep05581.
Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.
用于光子计算的光子集成电路为实现具有紧凑尺寸和低功耗的超高速和超宽带信号处理开辟了可能性。微分方程对几乎任何科学和工程领域中的基本物理现象和工程系统进行建模和调控,例如温度扩散过程、受加速度输入和摩擦力影响的运动物理问题以及不同电阻 - 电容电路的响应等。在本研究中,我们通过实验展示了一种基于单个硅微环谐振器来求解具有可调常数系数的一阶线性常微分方程的可行集成方案。此外,我们分析了输入信号的啁啾和脉冲宽度对计算偏差的影响。该器件可与电子技术(典型的互补金属氧化物半导体技术)兼容,这可能会推动用于光学计算的集成光子电路的发展。