Suppr超能文献

用于模拟骨软骨生理学和退行性关节疾病的三维成骨和软骨生成系统。

Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases.

作者信息

Alexander Peter G, Gottardi Riccardo, Lin Hang, Lozito Thomas P, Tuan Rocky S

机构信息

Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA.

Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Ri.MED Foundation, Palermo, I-90133 Italy.

出版信息

Exp Biol Med (Maywood). 2014 Sep;239(9):1080-95. doi: 10.1177/1535370214539232. Epub 2014 Jul 3.

Abstract

Tissue engineered constructs have the potential to function as in vitro pre-clinical models of normal tissue function and disease pathogenesis for drug screening and toxicity assessment. Effective high throughput assays demand minimal systems with clearly defined performance parameters. These systems must accurately model the structure and function of the human organs and their physiological response to different stimuli. Musculoskeletal tissues present unique challenges in this respect, as they are load-bearing, matrix-rich tissues whose functionality is intimately connected to the extracellular matrix and its organization. Of particular clinical importance is the osteochondral junction, the target tissue affected in degenerative joint diseases, such as osteoarthritis (OA), which consists of hyaline articular cartilage in close interaction with subchondral bone. In this review, we present an overview of currently available in vitro three-dimensional systems for bone and cartilage tissue engineering that mimic native physiology, and the utility and limitations of these systems. Specifically, we address the need to combine bone, cartilage and other tissues to form an interactive microphysiological system (MPS) to fully capture the biological complexity and mechanical functions of the osteochondral junction of the articular joint. The potential applications of three-dimensional MPSs for musculoskeletal biology and medicine are highlighted.

摘要

组织工程构建体有潜力作为正常组织功能和疾病发病机制的体外临床前模型,用于药物筛选和毒性评估。有效的高通量检测需要具有明确性能参数的简单系统。这些系统必须准确模拟人体器官的结构和功能及其对不同刺激的生理反应。肌肉骨骼组织在这方面存在独特挑战,因为它们是承重的、富含基质的组织,其功能与细胞外基质及其组织密切相关。具有特别临床重要性的是骨软骨结合部,它是退行性关节疾病(如骨关节炎(OA))中受影响的靶组织,由与软骨下骨紧密相互作用的透明关节软骨组成。在这篇综述中,我们概述了目前用于骨和软骨组织工程的体外三维系统,这些系统模拟天然生理学,以及这些系统的效用和局限性。具体而言,我们阐述了将骨、软骨和其他组织结合起来形成一个交互式微生理系统(MPS)以充分捕捉关节骨软骨结合部的生物学复杂性和机械功能的必要性。强调了三维MPS在肌肉骨骼生物学和医学中的潜在应用。

相似文献

1
Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases.
Exp Biol Med (Maywood). 2014 Sep;239(9):1080-95. doi: 10.1177/1535370214539232. Epub 2014 Jul 3.
2
Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology.
Biomed Mater. 2019 Oct 3;14(6):065010. doi: 10.1088/1748-605X/ab4243.
3
Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis.
Stem Cell Res Ther. 2013;4 Suppl 1(Suppl 1):S6. doi: 10.1186/scrt367. Epub 2013 Dec 20.
5
Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.
Mol Pharm. 2014 Jul 7;11(7):2203-12. doi: 10.1021/mp500136b. Epub 2014 Jun 2.
6
Bioengineering Human Cartilage-Bone Tissues for Modeling of Osteoarthritis.
Stem Cells Dev. 2022 Aug;31(15-16):399-405. doi: 10.1089/scd.2021.0317. Epub 2022 Mar 14.
8
Advances of nanotechnology in osteochondral regeneration.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Nov;11(6):e1576. doi: 10.1002/wnan.1576. Epub 2019 Jul 22.
9
Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.
Acta Biomater. 2017 Nov;63:210-226. doi: 10.1016/j.actbio.2017.09.008. Epub 2017 Sep 9.
10
Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
Acta Biomater. 2018 Nov;81:256-266. doi: 10.1016/j.actbio.2018.09.058. Epub 2018 Sep 28.

引用本文的文献

2
Emerging Landscape of Models for Assessing Rheumatoid Arthritis Management.
ACS Pharmacol Transl Sci. 2024 Jul 18;7(8):2280-2305. doi: 10.1021/acsptsci.4c00260. eCollection 2024 Aug 9.
3
Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel.
Bioact Mater. 2023 Oct 24;32:400-414. doi: 10.1016/j.bioactmat.2023.10.014. eCollection 2024 Feb.
5
Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives.
Bioact Mater. 2022 Jul 1;20:574-597. doi: 10.1016/j.bioactmat.2022.06.011. eCollection 2023 Feb.
6
Human Mesenchymal Stem Cell-Derived Miniature Joint System for Disease Modeling and Drug Testing.
Adv Sci (Weinh). 2022 Jul;9(21):e2105909. doi: 10.1002/advs.202105909. Epub 2022 Apr 18.
8
Current Models for Development of Disease-Modifying Osteoarthritis Drugs.
Tissue Eng Part C Methods. 2021 Feb;27(2):124-138. doi: 10.1089/ten.TEC.2020.0309. Epub 2021 Feb 4.
9
Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells.
Tissue Eng Part A. 2021 Aug;27(15-16):1099-1109. doi: 10.1089/ten.TEA.2020.0273. Epub 2020 Dec 22.
10
Osteochondral tissue coculture: An in vitro and in silico approach.
Biotechnol Bioeng. 2019 Nov;116(11):3112-3123. doi: 10.1002/bit.27127. Epub 2019 Jul 31.

本文引用的文献

3
Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis.
Stem Cell Res Ther. 2013;4 Suppl 1(Suppl 1):S6. doi: 10.1186/scrt367. Epub 2013 Dec 20.
4
Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
J Biomed Mater Res A. 2014 Dec;102(12):4317-25. doi: 10.1002/jbm.a.35107. Epub 2014 Feb 19.
5
The potential of encapsulating "raw materials" in 3D osteochondral gradient scaffolds.
Biotechnol Bioeng. 2014 Apr;111(4):829-41. doi: 10.1002/bit.25145. Epub 2013 Nov 30.
6
En bloc prefabrication of vascularized bioartificial bone grafts in sheep and complete workflow for custom-made transplants.
Int J Oral Maxillofac Surg. 2014 Feb;43(2):163-72. doi: 10.1016/j.ijom.2013.10.013. Epub 2013 Nov 14.
7
Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis.
Int J Mol Sci. 2013 Sep 30;14(10):19805-30. doi: 10.3390/ijms141019805.
8
Bioreactor cultivation of anatomically shaped human bone grafts.
Methods Mol Biol. 2014;1202:57-78. doi: 10.1007/7651_2013_33.
9
Cell-based approaches to the engineering of vascularized bone tissue.
Cytotherapy. 2013 Nov;15(11):1309-22. doi: 10.1016/j.jcyt.2013.06.005. Epub 2013 Aug 31.
10
Use of perfusion bioreactors and large animal models for long bone tissue engineering.
Tissue Eng Part B Rev. 2014 Apr;20(2):126-46. doi: 10.1089/ten.TEB.2013.0010. Epub 2013 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验