Demchenko Ivan T, Gasier Heath G, Zhilyaev Sergei Yu, Moskvin Alexander N, Krivchenko Alexander I, Piantadosi Claude A, Allen Barry W
Center for Hyperbaric Medicine and Environmental Physiology, and Departments of Anesthesiology and Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
Center for Hyperbaric Medicine and Environmental Physiology, and Departments of Anesthesiology and.
J Appl Physiol (1985). 2014 Sep 1;117(5):525-34. doi: 10.1152/japplphysiol.00435.2014. Epub 2014 Jul 3.
Unexplained adjustments in baroreflex sensitivity occur in conjunction with exposures to potentially toxic levels of hyperbaric oxygen. To investigate this, we monitored central nervous system, autonomic and cardiovascular responses in conscious and anesthetized rats exposed to hyperbaric oxygen at 5 and 6 atmospheres absolute, respectively. We observed two contrasting phases associated with time-dependent alterations in the functional state of the arterial baroreflex. The first phase, which conferred protection against potentially neurotoxic doses of oxygen, was concurrent with an increase in baroreflex sensitivity and included decreases in cerebral blood flow, heart rate, cardiac output, and sympathetic drive. The second phase was characterized by baroreflex impairment, cerebral hyperemia, spiking on the electroencephalogram, increased sympathetic drive, parasympatholysis, and pulmonary injury. Complete arterial baroreceptor deafferentation abolished the initial protective response, whereas electrical stimulation of intact arterial baroreceptor afferents prolonged it. We concluded that increased afferent traffic attributable to arterial baroreflex activation delays the development of excessive central excitation and seizures. Baroreflex inactivation or impairment removes this protection, and seizures may follow. Finally, electrical stimulation of intact baroreceptor afferents extends the normal delay in seizure development. These findings reveal that the autonomic nervous system is a powerful determinant of susceptibility to sympathetic hyperactivation and seizures in hyperbaric oxygen and the ensuing neurogenic pulmonary injury.
在暴露于潜在有毒水平的高压氧时,压力反射敏感性会出现不明原因的调整。为了对此进行研究,我们分别在5个和6个绝对大气压下对清醒和麻醉的大鼠暴露于高压氧时的中枢神经系统、自主神经和心血管反应进行了监测。我们观察到与动脉压力反射功能状态随时间变化相关的两个相反阶段。第一阶段赋予对潜在神经毒性剂量氧气的保护作用,与压力反射敏感性增加同时发生,包括脑血流量、心率、心输出量和交感神经驱动的降低。第二阶段的特征是压力反射受损、脑充血、脑电图尖峰、交感神经驱动增加、副交感神经解抑制和肺损伤。完全切断动脉压力感受器传入神经消除了最初的保护反应,而对完整的动脉压力感受器传入神经进行电刺激则延长了该反应。我们得出结论,由于动脉压力反射激活导致的传入神经活动增加会延迟过度中枢兴奋和癫痫发作的发展。压力反射失活或受损会消除这种保护作用,随后可能会发生癫痫发作。最后,对完整的压力感受器传入神经进行电刺激会延长癫痫发作发展的正常延迟时间。这些发现表明,自主神经系统是高压氧下对交感神经过度激活和癫痫发作以及随之而来的神经源性肺损伤易感性的一个强大决定因素。