Voortman Lenard M, Vulović Miloš, Maletta Massimiliano, Voigt Andreas, Franken Erik M, Simonetti Angelita, Peters Peter J, van Vliet Lucas J, Rieger Bernd
Quantitative Imaging Group, Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Quantitative Imaging Group, Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands; Institute of Nanoscopy, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
J Struct Biol. 2014 Aug;187(2):103-111. doi: 10.1016/j.jsb.2014.06.007. Epub 2014 Jul 3.
Cryo-electron tomography (CET) is the only available technique capable of characterizing the structure of biological macromolecules in conditions close to the native state. With the advent of subtomogram averaging, as a post-processing step to CET, resolutions in the (sub-) nanometer range have become within reach. In addition to advances in instrumentation and experiments, the reconstruction scheme has improved by inclusion of more accurate contrast transfer function (CTF) correction methods, better defocus estimation, and better alignments of the tilt-series and subtomograms. To quantify the importance of each contribution, we have split the full process from data collection to reconstruction into different steps. For the purpose of evaluation we have acquired tilt-series of ribosomes in such a way that we could precisely determine the defocus of each macromolecule. Then, we simulated tilt-series using the InSilicoTEM package and applied tomogram reconstruction and subtomogram averaging. Through large scale simulations under different conditions and parameter settings we find that tilt-series alignment is the resolution limiting factor for our experimental data. Using simulations, we find that when this alignment inaccuracy is alleviated, tilted CTF correction improves the final resolution, or equivalently, the same resolution can be achieved using less particles. Furthermore, we predict from which resolution onwards better CTF correction and defocus estimation methods are required. We obtain a final average using 3198 ribosomes with a resolution of 2.2nm on the experimental data. Our simulations suggest that with the same number of particles a resolution of 1.2nm could be achieved by improving the tilt-series alignment.
冷冻电子断层扫描(CET)是唯一能够在接近天然状态的条件下对生物大分子结构进行表征的可用技术。随着子断层平均技术作为CET的后处理步骤出现,(亚)纳米级别的分辨率已触手可及。除了仪器设备和实验方面的进展外,通过纳入更精确的对比度传递函数(CTF)校正方法、更好的散焦估计以及倾斜系列和子断层的更好对齐,重建方案也得到了改进。为了量化每个因素的重要性,我们将从数据收集到重建的整个过程分为不同步骤。为了进行评估,我们以能够精确确定每个大分子散焦的方式获取了核糖体的倾斜系列。然后,我们使用InSilicoTEM软件包模拟倾斜系列,并应用断层扫描重建和子断层平均技术。通过在不同条件和参数设置下的大规模模拟,我们发现倾斜系列对齐是我们实验数据的分辨率限制因素。通过模拟,我们发现当这种对齐误差得到缓解时,倾斜CTF校正可提高最终分辨率,或者等效地,使用更少的粒子也可达到相同的分辨率。此外,我们预测从哪个分辨率开始需要更好的CTF校正和散焦估计方法。我们使用3198个核糖体对实验数据进行最终平均,分辨率为2.2nm。我们的模拟表明,使用相同数量的粒子,通过改进倾斜系列对齐可实现1.2nm的分辨率。