Suppr超能文献

溶剂摩擦效应通过低频集体模式在整个蛋白质分子中传播。

Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

作者信息

Moritsugu Kei, Kidera Akinori, Smith Jeremy C

机构信息

Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

出版信息

J Phys Chem B. 2014 Jul 24;118(29):8559-65. doi: 10.1021/jp503956m. Epub 2014 Jul 7.

Abstract

Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

摘要

利用直接从分子动力学(MD)模拟得出的原子相关朗之万摩擦系数,对蛋白质溶剂化动力学进行了研究。为了确定溶剂化对原子摩擦系数的影响,对溶菌酶和葡萄球菌核酸酶进行了溶液和真空MD模拟,并通过朗之万模式分析进行了分析。如此得出的系数与原子溶剂可及表面积(ASA)大致相关,这与摩擦是由与溶剂分子碰撞产生的这一事实预期相符。然而,在核心区域内发现了相当数量具有较高摩擦系数的原子。因此,溶剂摩擦的影响会传播到蛋白质核心。内部系数在低频模式中有很大贡献,从而产生了一个由集体低频模式主导的、通过溶剂化实现从表面到核心的远程阻尼的简单图景。为了在隐式溶剂建模中利用这些发现,我们将全原子摩擦结果与使用朗之万动力学(LD)并采用两种经验表示法得到的结果进行了比较:恒定摩擦模型和ASA依赖(Pastor-Karplus)摩擦模型。恒定摩擦模型高估了核心区域的阻尼而低估了表面区域的阻尼,而ASA依赖摩擦模型仅对溶剂可及表面上的蛋白质原子进行阻尼,它很好地再现了在显式溶剂MD模拟中观察到的表面和核心区域的摩擦系数。因此,在LD模拟中,溶剂摩擦系数应仅施加在蛋白质表面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验