Steullet P, Cabungcal J H, Monin A, Dwir D, O'Donnell P, Cuenod M, Do K Q
Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
Neuroscience Research Unit, Pfizer, Inc., 700 Main Street, Cambridge, MA 02139, USA.
Schizophr Res. 2016 Sep;176(1):41-51. doi: 10.1016/j.schres.2014.06.021. Epub 2014 Jul 5.
Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
越来越多的证据表明,精神分裂症患者中表达γ-氨基丁酸(GABA)的小白蛋白中间神经元发生改变,且髓鞘/轴突完整性受损。这两个发现都可能归因于异常的神经发育轨迹,影响局部神经元网络和长程同步性,进而导致认知缺陷。在这篇综述中,我们展示了来自动物模型的数据,这些数据表明氧化还原失调、神经炎症和/或NMDAR功能减退(如在患者中观察到的)会损害小白蛋白中间神经元和少突胶质细胞的正常发育。这些观察结果表明,由于遗传和早期生活环境风险因素导致的氧化还原、神经免疫和谷氨酸能系统失调,可能导致精神分裂症患者小白蛋白中间神经元和白质异常,最终通过微电路和宏电路的异常功能影响认知、社交能力和情感行为。此外,我们提出氧化还原、神经免疫和谷氨酸能系统形成一个“中枢枢纽”,由于这些系统之间存在紧密的相互作用,这些“枢纽”系统中任何一个的失衡都会导致小白蛋白中间神经元和少突胶质细胞出现类似的异常。这些系统中不止一个出现失调的综合易感性可能特别有害。出于这些原因,具有抗氧化和抗炎特性且还能调节谷氨酸能传递的分子,如N-乙酰半胱氨酸,有望成为超高风险患者预防或疾病第一阶段早期干预治疗的工具。