Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
Biol Psychiatry. 2013 Mar 15;73(6):574-82. doi: 10.1016/j.biopsych.2012.09.020. Epub 2012 Nov 7.
A hallmark of the pathophysiology of schizophrenia is a dysfunction of parvalbumin-expressing fast-spiking interneurons, which are essential for the coordination of neuronal synchrony during sensory and cognitive processing. Oxidative stress as observed in schizophrenia affects parvalbumin interneurons. However, it is unknown whether the deleterious effect of oxidative stress is particularly prevalent during specific developmental time windows.
We used mice with impaired synthesis of glutathione (Gclm knockout [KO] mice) to investigate the effect of redox dysregulation and additional insults applied at various periods of postnatal development on maturation and long-term integrity of parvalbumin interneurons in the anterior cingulate cortex.
A redox dysregulation, as in Gclm KO mice, renders parvalbumin interneurons but not calbindin or calretinin interneurons vulnerable and prone to exhibit oxidative stress. A glutathione deficit delays maturation of parvalbumin interneurons, including their perineuronal net. Moreover, an additional oxidative challenge in preweaning or pubertal but not in young adult Gclm KO mice reduces the number of parvalbumin-immunoreactive interneurons. This effect persists into adulthood and can be prevented with the antioxidant N-acetylcysteine.
In Gclm KO mice, early-life insults inducing oxidative stress are detrimental to immature parvalbumin interneurons and have long-term consequences. In analogy, individuals carrying genetic risks to redox dysregulation would be potentially vulnerable to early-life environmental insults, during the maturation of parvalbumin interneurons. Our data support the need to develop novel therapeutic approaches based on antioxidant and redox regulator compounds such as N-acetylcysteine, which could be used preventively in young at-risk subjects.
精神分裂症病理生理学的一个标志是表达钙结合蛋白 parvalbumin 的快速放电中间神经元功能障碍,这些神经元对于在感觉和认知处理过程中协调神经元同步至关重要。精神分裂症中观察到的氧化应激会影响 parvalbumin 中间神经元。然而,尚不清楚氧化应激的有害影响是否在特定的发育时间窗口特别普遍。
我们使用谷胱甘肽合成受损的小鼠(Gclm 敲除 [KO] 小鼠)来研究氧化还原失调以及在出生后发育的各个时期施加的其他损伤对扣带前皮质中 parvalbumin 中间神经元的成熟和长期完整性的影响。
如 Gclm KO 小鼠中的氧化还原失调,使 parvalbumin 中间神经元但不是 calbindin 或 calretinin 中间神经元易受影响,并容易表现出氧化应激。谷胱甘肽缺乏会延迟 parvalbumin 中间神经元的成熟,包括其周围神经网。此外,在新生期或青春期而非成年早期的 Gclm KO 小鼠中施加额外的氧化应激挑战会减少 parvalbumin 免疫反应性中间神经元的数量。这种影响持续到成年期,并且可以用抗氧化剂 N-乙酰半胱氨酸预防。
在 Gclm KO 小鼠中,诱导氧化应激的生命早期损伤对未成熟的 parvalbumin 中间神经元有害,并具有长期后果。类似地,携带氧化还原失调遗传风险的个体在 parvalbumin 中间神经元成熟期间,可能容易受到生命早期环境损伤的影响。我们的数据支持需要开发基于抗氧化剂和氧化还原调节剂化合物的新治疗方法,例如 N-乙酰半胱氨酸,它可以在有风险的年轻受试者中预防性使用。