Ernst Dustin C, Lambrecht Jennifer A, Schomer Rebecca A, Downs Diana M
Department of Microbiology, University of Georgia, Athens, Georgia, USA.
Department of Microbiology, University of Georgia, Athens, Georgia, USA
J Bacteriol. 2014 Sep;196(18):3335-42. doi: 10.1128/JB.01960-14. Epub 2014 Jul 7.
RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5'-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes.
RidA是广泛保守的RidA/YER057c/UK114蛋白家族的原型成员,它通过催化反应性烯胺/亚胺中间体水解为稳定的酮酸产物,防止其在肠炎沙门氏菌中积累。在没有RidA的情况下,内源性2-氨基丙烯酸在细胞环境中持续存在的时间足够长,足以损害越来越多的必需代谢酶。先前的研究集中于依赖磷酸吡哆醛(PLP)的丝氨酸/苏氨酸脱水酶IlvA和TdcB催化丝氨酸脱水,作为内源性2-氨基丙烯酸的来源。当前的研究描述了源自半胱氨酸的内源性2-氨基丙烯酸的另一个来源。体内分析结果表明,ridA菌株对半胱氨酸的敏感性取决于肠炎沙门氏菌中主要的半胱氨酸脱硫酶CdsH。结果表明,半胱氨酸对2-氨基丙烯酸积累的影响不受丝氨酸/苏氨酸脱水酶的影响,揭示了内源性2-氨基丙烯酸产生的另一种机制。体外实验表明,半胱氨酸脱硫后,2-氨基丙烯酸从CdsH中释放出来,产生一种游离的氨基丙烯酸底物供RidA作用。这项工作扩展了我们对RidA在预防多种正常代谢过程产生的烯胺应激中所起作用的理解。