Suppr超能文献

损害功能性状相互作用的基因扰动会导致小鼠骨强度降低和脆性增加。

Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice.

作者信息

Smith Lauren M, Bigelow Erin M R, Nolan Bonnie T, Faillace Meghan E, Nadeau Joseph H, Jepsen Karl J

机构信息

Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA.

GE Inspection Technologies, LP, Lewistown, PA USA.

出版信息

Bone. 2014 Oct;67:130-8. doi: 10.1016/j.bone.2014.06.035. Epub 2014 Jul 6.

Abstract

Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J-Chr(A/J)/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i=the substituted chromosome) showed changes in mechanical function on the order of -26.6 to +11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function.

摘要

功能适应性可能会使旨在识别导致骨折易感性的基因的遗传研究中所使用的表型选择变得复杂。通常,影响一种性状的基因变异会通过其他性状的协同变化得到补偿。骨折就是一个典型例子,因为长骨的机械功能(刚度和强度)取决于系统如何协调调整骨组织的量(皮质面积)和质量(组织矿物质密度,TMD),以机械方式抵消骨坚固性(总面积/长度)的自然变化。我们提出,旨在识别调节抗骨折能力的基因的研究,将受益于更好地理解功能适应性如何影响基因型与表型的关系。我们分析了C57BL/6J-Chr(A/J)/NaJ染色体置换系(CSSs)的股骨,以系统地在小鼠基因组中探寻含有调节机械功能基因的染色体。这些CSSs(CSS-i,i = 被置换的染色体)在根据体型进行调整后,相对于B6参考品系,机械功能变化幅度为-26.6%至+11.5%。七个置换显示出坚固性、皮质面积或TMD发生改变,但对机械功能无影响(CSS-4、5、8、9、17、18、19);六个置换显示出坚固性、皮质面积或TMD发生改变,且机械功能降低(CSS-1、2、6、10、12、15);还有一个置换也显示出机械功能降低,但在本研究分析的三个物理性状上未表现出显著变化(CSS-3)。区分功能得以维持的CSSs与功能降低的CSSs的一个关键特征是,系统是否将皮质面积和TMD调整到补偿骨坚固性自然变化所需的水平。这些结果提供了一种将基因型与表型联系起来的新的生物力学机制,表明基因不仅通过调节个体性状来控制功能,还通过调节系统如何协同调整多个性状以建立功能来实现。

相似文献

2
Mapping the natural variation in whole bone stiffness and strength across skeletal sites.
Bone. 2014 Oct;67:15-22. doi: 10.1016/j.bone.2014.06.031. Epub 2014 Jul 2.
3
Genetically determined phenotype covariation networks control bone strength.
J Bone Miner Res. 2010 Jul;25(7):1581-93. doi: 10.1002/jbmr.41.
4
Complex genetic regulation of bone mineral density and insulin-like growth factor-I in C57BL/6J-Chr #A/J/NaJ chromosome substitution strains.
Physiol Genomics. 2008 Oct 8;35(2):159-64. doi: 10.1152/physiolgenomics.90203.2008. Epub 2008 Aug 5.
5
Genetic variation in structure-function relationships for the inbred mouse lumbar vertebral body.
J Bone Miner Res. 2005 May;20(5):817-27. doi: 10.1359/JBMR.041234. Epub 2004 Dec 27.
8
Canalization Leads to Similar Whole Bone Mechanical Function at Maturity in Two Inbred Strains of Mice.
J Bone Miner Res. 2017 May;32(5):1002-1013. doi: 10.1002/jbmr.3093. Epub 2017 Feb 27.

引用本文的文献

1
Increased tissue modulus and hardness in the TallyHO mouse model of early onset type 2 diabetes mellitus.
PLoS One. 2023 Jul 7;18(7):e0287825. doi: 10.1371/journal.pone.0287825. eCollection 2023.
2
Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL.
J Biol Chem. 2020 Dec 18;295(51):17713-17723. doi: 10.1074/jbc.RA120.013573.
3
Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human.
Front Genet. 2019 Apr 2;10:288. doi: 10.3389/fgene.2019.00288. eCollection 2019.
5
Differential Adaptive Response of Growing Bones From Two Female Inbred Mouse Strains to Voluntary Cage-Wheel Running.
JBMR Plus. 2018 Feb 12;2(3):143-153. doi: 10.1002/jbm4.10032. eCollection 2018 May.
6
8
Canalization Leads to Similar Whole Bone Mechanical Function at Maturity in Two Inbred Strains of Mice.
J Bone Miner Res. 2017 May;32(5):1002-1013. doi: 10.1002/jbmr.3093. Epub 2017 Feb 27.
9
Congenic Strains Confirm the Pleiotropic Effect of Chromosome 4 QTL on Mouse Femoral Geometry and Biomechanical Performance.
PLoS One. 2016 Feb 5;11(2):e0148571. doi: 10.1371/journal.pone.0148571. eCollection 2016.

本文引用的文献

1
PHENOTYPIC, GENETIC, AND ENVIRONMENTAL MORPHOLOGICAL INTEGRATION IN THE CRANIUM.
Evolution. 1982 May;36(3):499-516. doi: 10.1111/j.1558-5646.1982.tb05070.x.
3
Edgotype: a fundamental link between genotype and phenotype.
Curr Opin Genet Dev. 2013 Dec;23(6):649-57. doi: 10.1016/j.gde.2013.11.002. Epub 2013 Nov 26.
6
Computational tools for prioritizing candidate genes: boosting disease gene discovery.
Nat Rev Genet. 2012 Jul 3;13(8):523-36. doi: 10.1038/nrg3253.
9
10
Functional interactions among morphologic and tissue quality traits define bone quality.
Clin Orthop Relat Res. 2011 Aug;469(8):2150-9. doi: 10.1007/s11999-010-1706-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验