Smith Lauren M, Bigelow Erin M R, Nolan Bonnie T, Faillace Meghan E, Nadeau Joseph H, Jepsen Karl J
Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, MI USA.
GE Inspection Technologies, LP, Lewistown, PA USA.
Bone. 2014 Oct;67:130-8. doi: 10.1016/j.bone.2014.06.035. Epub 2014 Jul 6.
Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J-Chr(A/J)/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i=the substituted chromosome) showed changes in mechanical function on the order of -26.6 to +11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function.
功能适应性可能会使旨在识别导致骨折易感性的基因的遗传研究中所使用的表型选择变得复杂。通常,影响一种性状的基因变异会通过其他性状的协同变化得到补偿。骨折就是一个典型例子,因为长骨的机械功能(刚度和强度)取决于系统如何协调调整骨组织的量(皮质面积)和质量(组织矿物质密度,TMD),以机械方式抵消骨坚固性(总面积/长度)的自然变化。我们提出,旨在识别调节抗骨折能力的基因的研究,将受益于更好地理解功能适应性如何影响基因型与表型的关系。我们分析了C57BL/6J-Chr(A/J)/NaJ染色体置换系(CSSs)的股骨,以系统地在小鼠基因组中探寻含有调节机械功能基因的染色体。这些CSSs(CSS-i,i = 被置换的染色体)在根据体型进行调整后,相对于B6参考品系,机械功能变化幅度为-26.6%至+11.5%。七个置换显示出坚固性、皮质面积或TMD发生改变,但对机械功能无影响(CSS-4、5、8、9、17、18、19);六个置换显示出坚固性、皮质面积或TMD发生改变,且机械功能降低(CSS-1、2、6、10、12、15);还有一个置换也显示出机械功能降低,但在本研究分析的三个物理性状上未表现出显著变化(CSS-3)。区分功能得以维持的CSSs与功能降低的CSSs的一个关键特征是,系统是否将皮质面积和TMD调整到补偿骨坚固性自然变化所需的水平。这些结果提供了一种将基因型与表型联系起来的新的生物力学机制,表明基因不仅通过调节个体性状来控制功能,还通过调节系统如何协同调整多个性状以建立功能来实现。