Department of Electrical Engineering ESAT-SCD and IBBT-KU Leuven Future Health Department, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium. yves.moreau@esat. kuleuven.be
Nat Rev Genet. 2012 Jul 3;13(8):523-36. doi: 10.1038/nrg3253.
At different stages of any research project, molecular biologists need to choose - often somewhat arbitrarily, even after careful statistical data analysis - which genes or proteins to investigate further experimentally and which to leave out because of limited resources. Computational methods that integrate complex, heterogeneous data sets - such as expression data, sequence information, functional annotation and the biomedical literature - allow prioritizing genes for future study in a more informed way. Such methods can substantially increase the yield of downstream studies and are becoming invaluable to researchers.
在任何研究项目的不同阶段,分子生物学家都需要选择 - 通常是有些随意地,即使在经过仔细的统计数据分析之后 - 进一步进行实验研究的基因或蛋白质,以及由于资源有限而被排除在外的基因或蛋白质。整合复杂、异构数据集的计算方法 - 如表达数据、序列信息、功能注释和生物医学文献 - 可以以更明智的方式为未来的研究确定基因的优先级。这种方法可以大大提高下游研究的产量,并且对研究人员来说变得非常有价值。