Suppr超能文献

使用声学全息术和非线性建模对多元素临床高强度聚焦超声(HIFU)系统进行表征

Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling.

作者信息

Kreider Wayne, Yuldashev Petr V, Sapozhnikov Oleg A, Farr Navid, Partanen Ari, Bailey Michael R, Khokhlova Vera A

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Aug;60(8):1683-98. doi: 10.1109/TUFFC.2013.2750.

Abstract

High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased-array transducer. First, low amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared with pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field, including shock formation, are quantitatively predicted.

摘要

高强度聚焦超声(HIFU)是一种治疗方式,它依靠将声能传递到远处的组织部位来诱发热和/或机械性组织消融。为确保这种医疗技术的安全性和有效性,需要有标准方法来精确表征临床超声源在工作条件下产生的声压。HIFU场的表征因非线性波传播和相控阵换能器的复杂性而变得复杂。先前的工作已经描述了一种结合测量与建模的方法的各个方面,在此我们展示了针对临床相控阵换能器的这种方法。首先,在阵列与焦点之间的扫描平面上于水中进行低振幅水听器测量。其次,这些测量被用于通过全息术重建换能器的表面振动,并为三维声传播模型设置边界条件。最后,在一系列源功率水平上对声场进行非线性模拟。将模拟结果与在低功率和高功率水平下通过水听器直接测量的压力波形进行比较,表明包括冲击波形成在内的声场细节能够得到定量预测。

相似文献

1
Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Aug;60(8):1683-98. doi: 10.1109/TUFFC.2013.2750.
2
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.
IEEE Int Ultrason Symp. 2012 Oct 7;2012:1-4. doi: 10.1109/ULTSYM.2012.0231.
3
Numerical evaluation of the effect of electronically steering a phased array transducer: axially post-focal shifting.
Int J Hyperthermia. 2017 Nov;33(7):758-769. doi: 10.1080/02656736.2017.1309579. Epub 2017 May 15.
5
Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).
Int J Hyperthermia. 2016 Aug;32(5):569-82. doi: 10.3109/02656736.2016.1160154. Epub 2016 May 5.
6
"HIFU Beam:" A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by Focused Transducers in a Layered Medium.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2837-2852. doi: 10.1109/TUFFC.2021.3074611. Epub 2021 Aug 27.
7
A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1542-1557. doi: 10.1109/TUFFC.2017.2739649. Epub 2017 Aug 14.
10

引用本文的文献

2
xDDx: A Numerical Toolbox for Ultrasound Transducer Characterization and Design With Acoustic Holography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 May;72(5):564-580. doi: 10.1109/TUFFC.2025.3542405. Epub 2025 May 7.
3
Volumetric hyperthermia delivery using the ExAblate Body MR-guided focused ultrasound system.
Int J Hyperthermia. 2024;41(1):2349080. doi: 10.1080/02656736.2024.2349080. Epub 2024 May 5.
4
Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.
Annu Rev Biomed Eng. 2024 Jul;26(1):141-167. doi: 10.1146/annurev-bioeng-073123-022334. Epub 2024 Jun 20.
5
Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jul;70(7):693-707. doi: 10.1109/TUFFC.2023.3268603. Epub 2023 Jun 29.
6
Comparative Characterization of Nonlinear Ultrasound Fields Generated by Sonalleve V1 and V2 MR-HIFU Systems.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jun;70(6):521-537. doi: 10.1109/TUFFC.2023.3261420. Epub 2023 May 25.
7
Hydrophone Measurements for Biomedical Ultrasound Applications: A Review.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Feb;70(2):85-100. doi: 10.1109/TUFFC.2022.3213185. Epub 2023 Feb 6.
8
A Modular, Kerf-Minimizing Approach for Therapeutic Ultrasound Phased Array Construction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2766-2775. doi: 10.1109/TUFFC.2022.3178291. Epub 2022 Sep 27.
9
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1257-1267. doi: 10.1109/TUFFC.2022.3150179. Epub 2022 Mar 30.
10
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1243-1256. doi: 10.1109/TUFFC.2022.3150186. Epub 2022 Mar 30.

本文引用的文献

1
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid.
J Acoust Soc Am. 2013 Feb;133(2):661-76. doi: 10.1121/1.4773924.
2
Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):290-300. doi: 10.1109/TUFFC.2013.2565.
4
SIMULATION OF THREE-DIMENSIONAL NONLINEAR FIELDS OF ULTRASOUND THERAPEUTIC ARRAYS.
Acoust Phys. 2011 May 1;57(3):334-343. doi: 10.1134/S1063771011030213.
5
6
Shock wave technology and application: an update.
Eur Urol. 2011 May;59(5):784-96. doi: 10.1016/j.eururo.2011.02.033. Epub 2011 Feb 23.
7
Thresholds for nonlinear effects in high- intensity focused ultrasound propagation and tissue heating.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2450-9. doi: 10.1109/TUFFC.2010.1711.
8
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.
Acoust Phys. 2010 Jan 1;56(3):354-363. doi: 10.1134/s1063771010030140.
9
Measurements, phantoms, and standardization.
Proc Inst Mech Eng H. 2010;224(2):375-91. doi: 10.1243/09544119JEIM647.
10
Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound.
Ultrasound Med Biol. 2010 Feb;36(2):250-67. doi: 10.1016/j.ultrasmedbio.2009.09.010. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验